AS Level

Maths

Silver Set A, Paper 1 (Edexcel)

AS Level Maths - CM Paper 1 (for Edexcel) / Silver Set A

Question	Solution	Partial Marks	Guidance
1	$3^{x} \times 3^{2(x+2)}=3^{-3}$ $x+2(x+2)=-3 \Rightarrow x=\ldots$ $x=-\frac{7}{3}$	B1 M1 A1 oe [3]	Writes a correct equation in powers of 3 only Uses correct index laws to form a linear equation in x and then solves for x Correct value of x
$\begin{gathered} \hline \mathbf{1} \\ \text { ALT } \end{gathered}$	$\begin{aligned} & \log \left(3^{x} \times 9^{x+2}\right)=\log \frac{1}{27} \\ & \log 3^{x}+\log 9^{x+2}=\log \frac{1}{27} \\ & x \log 3+(x+2) \log 9=\log \frac{1}{27} \Rightarrow x=\ldots \\ & x=\frac{\log \frac{1}{27}-2 \log 9}{\log 3+\log 9}\left\{\Rightarrow x=-\frac{7}{3}\right\} \end{aligned}$	B1 M1 A1 oe [3]	Writes a correct equation involving logarithms Uses correct rules of logarthims to form a linear equation in x and then solves for x Correct value of x - accept the answer given in terms of logs ISW once a correct answer is reached

Special cases for Question 1:

After $0 / 3$ scored, then allow SCB1 for any of the following seen

- $3^{x} \times 9^{x+2} \rightarrow 3^{x+2(x+2)}$
- $3^{x} \times 9^{x+2} \rightarrow 9^{9^{\frac{1}{x}+x+2}}$
- $\log \left(3^{x} \times 9^{x+2}\right) \rightarrow x \log 3+(x+2) \log 9$
- $\log \left(3^{x} \times 9^{x+2}\right) \rightarrow x \log 3+2(x+2) \log 3 \quad$ (any \log base)

2	$\begin{aligned} & 3-\sqrt{x}=0 \Rightarrow x=9 \\ & \int_{0}^{9}(3-\sqrt{x}) \mathrm{d} x=\left[3 x-\frac{2 x^{\frac{3}{2}}}{3}\right]_{0}^{9} \\ & =3(9)-\frac{2}{3}(9)^{\frac{3}{2}}-3(0)+\frac{2}{3}(0) \\ & =9 \end{aligned}$	M1* A1 B1 M1 (dep*) A1 cso	Attempts to integrate at least one of the terms indefinitely M1 for $x^{n} \rightarrow x^{n+1}$ Correct indefinite integration For correct limits seen on the integral or seen used Correct method to evaluate an integral between $x=0$ and $x=k>0$ Must see substitution if they are working with incorrect limits or an incorrect indefinite integral Obtains correct final answer
3 (a)	$\begin{aligned} & 2(-3)^{3}+12(-3)^{2}+a(-3)+a=0 \\ & \Rightarrow-54+108-3 a+a=0 \\ & \Rightarrow 2 a=54 \\ & \Rightarrow a=27 \quad \text { AG } \end{aligned}$	B1	Shows the result convincingly Need to see the substitution or candidates state they are using $\mathrm{f}(-3)=0$ May also proceed to long division in terms of a and set the remainder $=0$
3 (b)	$2 x^{3}+12 x^{2}+27 x+27=(x+3)\left(2 x^{2}+6 x+9\right)$ Discriminant of quadratic factor is $6^{2}-4(2)(9)=-36$ Since $-36<0$, the quadratic factor has no real roots 6^{2} Thus $\mathrm{f}(x)=0$ only has one real root (which is $x=-3$)	M1* A1 M1 (dep*) A1	Complete method to find the quadratic factor - If using long division, they must complete the division in full and obtain $2 x^{2}+p x+q, p q \neq 0$ - only condone slips in arithmetic, not method - If using inspection, M1 for two coefficients correct Must be working from the correct cubic Obtains correct quadratic factor Begins method to show their quadratic factor has no real roots, eg by evaluating the discriminant, completing the square or finding x coordinate of turning point by calculus M0 if their quadratic discriminant has non-negative discriminant oe Shows the result convincingly with conclusion eg 'thus only one real root', 'as required', 'qed'

4 (a)	$x=1 / 2, x=2$	B1 oe [1]	Correct roots oe B0 for $(1 / 2,0)$ and $(2,0)$
4 (b)	$x=3$	B1 oe [1]	Correct equation of the asymptote oe
4 (c)	$\{k \in \mathbb{R}: k>-8\}$	B1 oe [1]	Correct set of values of k Allow omission of ' $\in \mathbb{R}$ ' and accept equivalent sets
4 (d)	EXAMPLE (see notes):	B1 B1	Correct shape - the graph needs to be concave for $x<$ " 2 " and convex for $x>$ " 2 ". Be flexible in the level of convexity as this will depend on how candidates interpret the diagram. Do not allow a straight line for all x but allow one of the segments (<2 or >2) to be a straight line Correct intersection with the x axis (and no others)

5	$\begin{aligned} & \left(x+\frac{p}{2}\right)^{2}-\frac{p^{2}}{4}+\left(y+\frac{q}{2}\right)-\frac{q^{2}}{4}=14 \\ & \left(x+\frac{p}{2}\right)^{2}+\left(y+\frac{q}{2}\right)=14+\frac{p^{2}}{4}+\frac{q^{2}}{4} \end{aligned}$ Centre is $(2,-5)$, so $\begin{aligned} & \frac{p}{2}=-2 \Rightarrow p=-4, \quad \frac{q}{2}=5 \Rightarrow q=10 \\ & r^{2}=14+\frac{(-4)^{2}}{4}+\frac{(10)^{2}}{4}=43 \\ & r=\sqrt{43} \end{aligned}$	M1 M1 A1 M1 A1		Correctly completes the square on the x and y terms All terms need not be seen together and can be implied Complete method to find p and q by comparing with their $p / 2$ and their $q / 2$ (NB M0M1 is possible if constants not seen) Allow sign confusion for the M1 Correct values of p and q (correct values imply 3/3) Uses their value for p and q to find the radius of the circle Correct radius Decimal equivalent of 6.24 is A1 (must be correct to 3 sf)
$\begin{gathered} 5 \\ \text { ALT } \end{gathered}$	$\begin{aligned} & (x-2)^{2}+(y+5)^{2}=r^{2} \\ & x^{2}-4 x+4+y^{2}+10 y+25=r^{2} \\ & x^{2}+y^{2}-4 x+10 y=r^{2}-29 \end{aligned}$ So $p=-4$ and $q=10$ $\begin{aligned} & r^{2}-29=14 \Rightarrow r^{2}=43 \\ & \Rightarrow r=\sqrt{43} \end{aligned}$	M1 M1 A1 M1 A1	[5]	Writes correct form for the equation of the circle Allow any symbol on the RHS - in particular, do not penalise candidates that think the RHS is the radius (this is assessed later) Attempts to expand the brackets and compares coefficients to find p and q. Their LHS must be of the form $(x \pm 4)^{2}+(y \pm 6)^{2}$ Correct values of p and q (correct values imply $3 / 3$) Uses their value for p and q to find the radius of the circle Correct radius Decimal equivalent of 7.87 is A1 (must be correct to 3 sf)

6 (a)	$V=A \mathrm{e}^{k t}$ Initial volume $=300$, so $A=300$ $\begin{aligned} & 80=300 \mathrm{e}^{2 k} \Rightarrow \mathrm{e}^{2 k}=\frac{8}{30} \\ & \Rightarrow 2 k=\ln \frac{8}{30} \\ & \Rightarrow k=\frac{1}{2} \ln \frac{8}{30} \quad(=-0.6608 \ldots) \end{aligned}$ So $V=300 \mathrm{e}^{\left(\frac{1}{2} \ln \frac{8}{30}\right) t}$	M1* A1 M1(dep*) M1 A1	States or implies use of an exponential model Obtains $V=300 \mathrm{e}^{k t}$ (or implied) (note this implies M1A1) Uses $V(2)=80$ to form an equation in their k and re-arranges for $\mathrm{e}^{2 k}$ Their A in the model must be numerical Takes logs and re-arranges for their k Obtains V in terms of t Accept decimal equivalents in numerator correct to 3 sf
6 (b)	eg volume does not actually reach zero according to the model / it would take infinite time	B1 [1]	Correct explanation for why the model is inappropriate
7	Odd powers of x cancel, so $\begin{aligned} & (2+3 x)^{5}+(2-3 x)^{5}=2\left[2^{5}+{ }^{5} \mathrm{C}_{2}(2)^{3}(3 x)^{2}+{ }^{5} \mathrm{C}_{4}(2)^{1}(3 x)^{4}\right] \\ & =64+1440 x^{2}+1620 x^{4} \end{aligned}$ Hence $\begin{aligned} & (2+3 x)^{5}+(2-3 x)^{5}=244 \\ & \Rightarrow 1620 x^{4}+1440 x^{2}-180=0 \\ & \Rightarrow 9 x^{4}+8 x^{2}-1=0 \\ & \Rightarrow\left(9 x^{2}-1\right)\left(x^{2}+1\right)=0 \\ & \Rightarrow x^{2}=\frac{1}{9} \\ & \Rightarrow x= \pm \frac{1}{3} \end{aligned}$	M1 M1* A1 oe M1 (dep*) A1	One term of the form ${ }^{5} \mathrm{C}_{k}(2)^{k}(\pm 3 x)^{5-k}, k \neq 0,5$ (powers may be interchanged) OR correct unsimplified expansion of $(2 \pm 3 x)^{3}$ seen Complete method to expand both brackets and find their sum NB $2^{5}+{ }^{5} \mathrm{C}_{2}(2)^{3}(3 x)^{2}+{ }^{5} \mathrm{C}_{4}(2)^{1}(3 x)^{4}$ is M1 until multiplied by 2 NB M0M1 is possible Obtains correct three term quartic (or equivalent) Complete method to solve a three-term quartic for x NB solving for x^{2} is not enough Obtains correct values of x Both correct values only with verification seen can score SCB1B1 (unless they go on to show these are the only solutions)

8 (a)	$\begin{aligned} & B C^{2}=4^{2}+6^{2}-2(4)(6) \cos (12) \\ & \Rightarrow B C^{2}=5.0489 \ldots \\ & \Rightarrow B C=\sqrt{5.0489 \ldots} \\ & \Rightarrow B C=2.246 \ldots \end{aligned}$ (so distance between B and C is) $\underline{\mathbf{2 . 0}} \mathrm{km}$ (nearest 0.5 km)	M1 A1 cao	Substitutes values correctly into the cosine rule to form equation in $B C^{2}$ NB allow any variable on the LHS, but... $\begin{array}{ll} x^{2}=4^{2}+6^{2}-2(4)(6) \cos (12) & \text { is M1 } \\ x=4^{2}+6^{2}-2(4)(6) \cos (12) & \text { is M0 until we see them sqrt } \end{array}$ because there is no evidence they are using the correct cosine rule Correct distance between the planes Units not necessary
8 (b)	$\begin{aligned} & \frac{" 2.246 "}{\sin 12}=\frac{6}{\sin A B C} \Rightarrow \sin A B C=\ldots \\ & \Rightarrow \sin A B C=\frac{6 \sin 12}{" 2.246 "} \end{aligned}$ Since $A B C$ is obtuse, $A B C=180-\sin ^{-1}\left(\frac{6 \sin 12}{" 2.246 "}\right)$ $=146.27 \ldots$ So $\theta=180-146.27 \ldots=$ awrt $\underline{34}$	M1 M1 A1 cao [3]	Uses correct sine rule to form equation involving angle $A B C$ and rearranges for $\sin A B C$ NB no marks if they find $A C B$ until they involve $A B C$ Complete method to find θ Correct value of θ to nearest degree
$8 \text { (b) }$ ALT	$\begin{aligned} & \cos A B C=\frac{4^{2}+" 2.246 "^{2}-6^{2}}{2(4)(" 2.246 ")} \\ & \Rightarrow \cos A B C=-0.8317 \ldots \\ & \Rightarrow A B C=\cos ^{-1}(-0.8317 \ldots)=146.27 \ldots \end{aligned}$ So $\theta=180-146.27 \ldots=$ awrt $\underline{34}$	M1 M1 A1 cao	Uses correct cosine rule to form an equation involving angle $A B C$ NB no marks if they find $A C B$ until they involve $A B C$ Complete method to find θ Correct value of θ to nearest degree

9 (a)	eg we know x^{2} is positive but x may not be positive	B1	[1]

11 (b)	Let x be the width and y the length of R Then $P=2 x+2 y$ and $A=x y$ So $x+y=\frac{1}{2} P$ and $\sqrt{x y}=\sqrt{A}$ Then using (a), $\frac{1}{4} P \leqslant \sqrt{A} \Rightarrow P \leqslant 4 \sqrt{A}$	M1* M1 (dep*) A1	Sets up the problem by forming expressions for the perimeter and area of the rectangle May use any symbol for the width and length Attempts to relate their P and A to the inequality in (a) eg by making a correct relation of the perimeter to $x+y$ and the area to $\sqrt{ }(x y)$ Shows the result convincingly with no errors
$\begin{gathered} 11 \text { (b) } \\ \text { ALT } \end{gathered}$	Let x be the width and y the length of R Then $P=2 x+2 y$ and $A=x y$ Using part (a), $\frac{1}{2}\left[\frac{1}{2}(2 x+2 y)\right] \geq \sqrt{x y}$ $\begin{aligned} & \Rightarrow \frac{1}{4} P \leqslant \sqrt{A} \\ & \Rightarrow P \leqslant 4 \sqrt{A} \end{aligned}$	M1* M1 (dep*) A1	Sets up the problem by forming expressions for the perimeter and area of the rectangle May use any symbol for the width and length Attempts to relate their P and A to the inequality in (a) eg "introducing" P onto the LHS or multiplying both sides by 4 Shows the result convincingly with no errors
12 (a)	54400	B1 [1]	Cao
12 (b)	$\begin{aligned} & N(3)=112-0.4(3-12)^{2}=79600 \\ & N(2)=112-0.4(2-12)^{2}=72000 \end{aligned}$ So change in population size $=79600-72000=7600$	M1 A1 [2]	Complete method to find change in the population size in the third hour of the experiment Correct change in the population size
12 (c)	eg (corresponds to) the time at which the population is largest	B1 [1]	Explains the significance of this time

\begin{tabular}{|c|c|c|c|c|}
\hline 12 (d) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 112-0.4(t-12)^{2}=0 \\
\& \Rightarrow(t-12)^{2}=280 \\
\& \Rightarrow t=12 \pm \sqrt{280}
\end{aligned}
\] \\
Colony eliminated when \(t=12+\sqrt{ } 280=28.733 \ldots\) \\
Time taken \(=28.733 \ldots-12=16.7\) hours \((3 \mathrm{sf})\)
\end{tabular} \& M1

M1

A1 \& \& | Complete method to find the values of t for which $N=0$ |
| :--- |
| May only find the larger time (which is fine) |
| Complete method to find the time taken for the antibiotic to eliminate the colony (eg their time - 12) Correct time with units (awrt 16.7 hours) |

\hline 12 (e) \& | - the bacteria are unlikely to react the antibiotic instantly |
| :--- |
| - there may be a time delay between between adminstrations and first signs of die out | \& B1 \& 1] \& Correct reason why the assumption may not be correct

\hline 13 (a) \& $$
\begin{aligned}
\left(\frac{1}{\cos x}-\tan x\right)^{2} & \equiv\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right)^{2} \\
& \equiv\left(\frac{1-\sin x}{\cos x}\right)^{2} \\
& \equiv \frac{(1-\sin x)^{2}}{\cos ^{2} x} \\
& \equiv \frac{(1-\sin x)^{2}}{1-\sin ^{2} x} \\
& \equiv \frac{(1-\sin x)^{2}}{(1-\sin x)(1+\sin x)} \\
& \equiv \frac{1-\sin x}{1+\sin x}
\end{aligned}
$$ \& M1

M1

M1
M1

A1 \& [4] \& | Replaces $\tan x$ with $\sin x / \cos x$ |
| :--- |
| Forms a common denominator and distributes the power of 2 $\boldsymbol{O R}$ expands to obtain $\frac{1}{\cos ^{2} x}-\frac{2 \sin x}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}$ oe |
| Use of $\cos ^{2} x \equiv 1-\sin ^{2} x$ on denominator |
| Complete and convincing proof with no errors seen |

\hline
\end{tabular}

14 (a)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x-3 \\ & \text { At } P, \frac{\mathrm{~d} y}{\mathrm{~d} x}=-2\left(-\frac{1}{2}\right)-3=-2 \end{aligned}$ So gradient of normal at P is $\frac{1}{2}$ Equation of normal at P is then $\begin{aligned} & y-\frac{5}{4}=\frac{1}{2}\left(x+\frac{1}{2}\right) \\ & \Rightarrow y=\frac{1}{2} x+\frac{3}{2} \\ & 3 \ln ^{2} x-\frac{3}{2} \ln x+\frac{1}{2} x=\frac{1}{2} x+\frac{3}{2} \\ & \Rightarrow 3 \ln ^{2} x-\frac{3}{2} \ln -\frac{3}{2}=0 \\ & \Rightarrow 2 \ln ^{2} x-x-1=0 \end{aligned}$	M1 M1 M1 A1 oe A1	Obtains correct $\mathrm{d} y / \mathrm{d} x$ Substitutes $x=-1 / 2$ to find gradient at P (may make a slip) Complete method to find the equation of the normal Their gradient of the normal must not be their " -2 " Correct equation of the normal in any form Shows the result convincingly with no errors seen
14 (b)	$\begin{aligned} & (2 \ln x+1)(\ln x-1)=0 \\ & \Rightarrow \ln x=-\frac{1}{2}, \ln x=1 \\ & \Rightarrow x=\mathrm{e}^{-\frac{1}{2}}, \quad x=\mathrm{e} \end{aligned}$ Hence $\begin{aligned} & Q=\left(\mathrm{e}^{-\frac{1}{2}}, \frac{3}{2}+\frac{1}{2} \mathrm{e}^{-\frac{1}{2}}\right) \\ & R=\left(\mathrm{e}, \frac{3}{2}+\frac{1}{2} \mathrm{e}\right) \end{aligned}$	M1 A1 A1 A1	Complete method to solve the quadratic for x Correct values of $\ln (x)$ Implied by correct values of x following sufficient working Correct exact coordinates of Q Correct exact coordinates of R

15 (a)	$\begin{aligned} & \overrightarrow{A B}=\binom{4}{-1-p} \\ & \overrightarrow{B C}=\binom{-6}{-8} \end{aligned}$	B1 B1 [2]	Accept use of i-j notation instead of column vectors Correct expression for $\overrightarrow{A B}$ Correct expression for $\overrightarrow{B C}$
15 (b)	$\begin{aligned} & 2 \sqrt{4^{2}+(-1-p)^{2}}+2 \sqrt{6^{2}+8^{2}}=30 \\ & \Rightarrow \sqrt{16+1+2 p+p^{2}}+10=15 \\ & \Rightarrow \sqrt{17+2 p+p^{2}}=5 \\ & \Rightarrow p^{2}+2 p+17=25 \\ & \Rightarrow p^{2}+2 p-8=0 \\ & \Rightarrow(p+4)(p-2)=0 \end{aligned}$ But since $p>0, p=2$	M1 M1 M1 A1 [4]	Correct magnitude of their $\overrightarrow{A B}$ or their $\overrightarrow{B C}$ seen Forms an equation in terms of p using the given information and their magnitudes Employs a complete method to solve the resulting equation for p Must be working from an equation in a comparable form Obtains correct value of p. Final answer, no errors
15 (c)	$\begin{aligned} \overrightarrow{O D} & =\overrightarrow{O A}+\overrightarrow{A D} \\ & =\overrightarrow{O A}+\overrightarrow{B C} \\ & \left.=\begin{array}{c} 3 \\ 2 " \end{array}\right)+\binom{-6}{-8} \\ & =\binom{-3}{-6} \end{aligned}$ OR: $\begin{aligned} \overrightarrow{O D} & =\overrightarrow{O C}+\overrightarrow{C D} \\ & =\overrightarrow{O C}+\overrightarrow{B A} \\ & =\underline{\binom{1}{-9}-\binom{4}{-1-" 2 "}} \\ & =\binom{-3}{-6} \end{aligned}$	M1 A1 [2]	Accept use of i-j notation instead of column vectors Correct method to find the position vector of D using their magnitudes and their p Correct position vector of D

List of relevant areas for Q16 - referenced diagram on the next page

This table not exhaustive, but contains the areas anticipated to be most frequently appearing
Some shapes are grouped into boxes - this to show that these shapes are likely to be used together to give the required area (2nd M1)

Shape	Method(s) to find area	Shape	Method(s) to find area
$\begin{gathered} O A B D \\ \text { (trapezium) } \end{gathered}$	$\frac{1}{2}(O A+B D) \times O D=\frac{1}{2}\left(2+\frac{7}{5}\right) \times \frac{9}{5}=\frac{153}{50}$	OAE (triangle)	$\begin{aligned} & \frac{1}{2}(O A)(O E)=\frac{1}{2}(2)(6)=6 \\ & \text { OR } \int_{0}^{6}\left(-\frac{1}{3} x+2\right) d x \end{aligned}$
$\begin{gathered} B C D \\ \text { (triangle) } \end{gathered}$	$\frac{1}{2}(B D)(C D)=\frac{1}{2}\left(\frac{7}{5}\right)\left(\frac{9}{5}-\frac{4}{3}\right)=\frac{49}{150}$ OR $\int_{\frac{4}{3}}^{\frac{9}{5}}(3 x-4) d x$	$\begin{gathered} B C E \\ \text { (triangle) } \end{gathered}$	$\begin{aligned} & \frac{1}{2}(C E)(B D)=\frac{1}{2}\left(6-\frac{4}{3}\right)\left(\frac{7}{5}\right)=\frac{49}{15} \\ & \text { OR } \frac{1}{2}(C D)(B D)+\frac{1}{2}(B D)(D E) \\ & \quad=\frac{1}{2}\left(\frac{7}{5}\right)\left(\frac{9}{5}-\frac{4}{3}\right)+\frac{1}{2}\left(\frac{7}{5}\right)\left(6-\frac{9}{5}\right) \\ & \text { OR } \int_{\frac{4}{3}}^{\frac{9}{5}}(3 x-4) d x+\int_{\frac{9}{5}}^{6}\left(-\frac{1}{3} x+2\right) d x \end{aligned}$
$\begin{gathered} A B F \\ \text { (triangle) } \end{gathered}$	$\begin{aligned} & \frac{1}{2}(A F)(B G)=\frac{1}{2}(6)\left(\frac{9}{5}\right)=\frac{27}{5} \\ & \text { OR } \frac{1}{2}(G F)(B G)+\frac{1}{2}(A G)(B G) \\ & \quad=\frac{1}{2}\left(\frac{7}{5}+4\right)\left(\frac{9}{5}\right)+\frac{1}{2}\left(2-\frac{7}{5}\right)\left(\frac{9}{5}\right) \end{aligned}$	$\begin{gathered} O C F \\ \text { (triangle) } \end{gathered}$	$\begin{aligned} & \frac{1}{2}(O C)(O F)=\frac{1}{2}\left(\frac{4}{3}\right)(4)=\frac{8}{3} \\ & \text { OR }-\int_{0}^{\frac{4}{3}}(3 x-4) d x \end{aligned}$

For the problem-solving mark, we need to see a "correct method used to find a relevant area". For this M1, we need to see them use their values to find one of the relevant shapes in this table: either $O A B D, B C D, O A E, B C E, A B F$ or $O C F$. Values imply the shape they are working with.

The shapes in the table may be further sub-divided, but the areas of these smaller shapes are not sufficient for the M1.
For those using an integral, they must attempt the integral ($x^{n} \rightarrow x^{n \pm 1}$) and substitute the limits in the correct order for this M1

