Surname							
Other Names							
Candidate Signature							
Centre Number			Candidate Numbe	r			
· · · · · · · · · · · · · · · · · · ·							
Examiner Comments					Tota	ıl Mark	ĸs

MATHEMATICS

AS LEVEL QUESTION COMPILATION

Questions on: Sequences and Series (Binomial Expansion)

Instructions to candidates:

 In the boxes above, write your centre number, 	candidate number,	your surname,	other names
and signature.			

- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 5 questions in this question paper. The total mark for this paper is 40.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

1 Expand		
	$(3-2x)^5$	
	$(5 2\lambda)$	
giving each term in its simplest form.		(4)

Question 1 continued	
Т	COTAL 4 MARKS

2 (a) Find the first four terms, in ascending powers of x , of the binomial expansion	ion of $(1 + ax)^{12}$,
where a is a constant. Give each term in its simplest form.	(3)
Given that the coefficient of x^2 in this expansion is 594,	
(b) find the possible values of <i>a</i> .	(3)

Question 2 continued	
	TOTAL 6 MARKS

(3)

3 (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of

$$(2-kx)^{7}$$

where k is a non-zero constant. Give each term in its simplest form. (4)

Given that the coefficient of x^3 is 20 times greater than the coefficient of x,

(b) find the value(s) of k.

Question 3 continued	
	TOTAL 7 MARKS

(4)

(3)

(1)

4 (a) Find, in ascending powers of x, the first 4 terms of the binomial expansion of

$$\left(1+\frac{x}{3}\right)^{10}$$

giving each term in its simplest form.

(b) Use your expansion to find an approximation for (1.038)¹⁰, giving your answer to 4 decimal places.

(c) Explain how you could make your answer to part (b) more accurate.

Question 4 continued	
Т	COTAL 8 MARKS

5 (a) Find the first 3 terms, in ascending powers of x, in the binomial expansion $(1 + px)^9$ where p is a constant. Give each term in its simplest form. (3) The first 3 terms are 1, -18x and qx^2 , where q is a constant. (b) Find the value of p and the value of q. (3)

Question 5 continued	
ΤO	TAL 6 MARKS

6 (a) In ascending powers of x, find the first 4 terms of the binomial expansion of

$$\left(1-\frac{x}{4}\right)^6$$

giving each term in its simplest form.

(b) Hence find, in ascending powers of x, the first 3 terms of the binomial expansion of

$$\left(2 - \frac{x}{5}\right) \left(1 - \frac{x}{4}\right)^6$$

giving each term in its simplest form.

(3)

(3)

Question 6 continued	
	TOTAL 6 MARKS

7 (a) In ascending powers of x, find the first 4 terms of the binomial expansion of

 $(1-5x)^7$

giving each term in its simplest form.

$$g(x) = (a+bx)(1-5x)^7$$

Given that the binomial expansion of g(x) contains the terms 3 and -109x,

(b) (i) find the values of a and b,

(ii) find the coefficient of x^3 in the binomial expansion of g(x).

(5)

(3)

Question 7 continued	
	TOTAL 8 MARKS

8 (a) In ascending powers of x, find the first three terms in the binomial expansion of

$$\left(3 - \frac{x}{4}\right) \left(2 + \frac{x}{5}\right)^5$$

up to and including the term in x^2 .

(b) Given that n is a positive integer, use the definition

$${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

In the expansion of $(3x + 1)^p$, where p is a positive integer, the coefficient of x is 24.

(c) (i) Find the value of p.

to prove that ${}^{n}C_{1} = n$.

(ii) Determine the coefficient of x^2 in this expansion.

(4)

(1)

(2)

(2)

Question 8 continued	
	TOTAL 9 MARKS

