Surname							
Other Names							
Candidate Signature							
Centre Number			Candidate Number	er			
Examiner Comments					Tota	al Mar	KS

MATHEMATICS

A LEVEL PAPER 1

CM

Bronze Set C (Edexcel Version)

Time allowed: 2 hours

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 13 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

	$x^4 - 4x^2y + y^4 = 49$	
at the point (2, 3). Give to be found.	e your answer in the form $ax + by + c$	= 0, where a, b and c are integers (6

Question 1 continued	
TOTA	L 6 MARKS

2 Prove by exhaustion that				
$1^3 + 2^3 + \ldots + n^3 \equiv (1 + 2 + \ldots + n)^2$				
for positive integers 1 to 6 inclusive. (3)	3)			

Question 2 continued
TOTAL 3 MARKS

3 The equation of the curve <i>C</i> satisfies	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - x^2}{x}, x > 0$	
Given that the point $(1, 4)$ lies on C , express y in terms of x .	(5)

Question 3 continued
TOTAL 5 MARKS

outside the

4	$g(x) = \frac{1}{\sqrt{(4+3x)}}, x < \frac{3}{4}$
	(a) Find, in ascending powers of x , the first 3 terms in the bin

- (a) Find, in ascending powers of x, the first 3 terms in the binomial expansion of g(x), up to and including the term in x^2 . Give each term in its simplest form. (5)
- (b) Find the value of $\frac{1}{\sqrt{(4+3x)}}$ when $x = \frac{1}{3}$.

Give your answer in the form $k\sqrt{5}$. (1)

(c) Substitute $x = \frac{1}{3}$ into your binomial expansion in part (a) and hence find an approximation for the value of $\sqrt{5}$. Give your approximation as a simplified fraction. (2)

Question 4 continued	
	_
	_
TOTAL 8 MARKS	

5

Figure 1

Figure 1 above shows a circle with equation

$$x^2 + y^2 - 2x - 10y - 8 = 0$$

The circle has centre N and radius r.

(a) Find the coordinates of N and the value of r.

(4)

The points *A* and *B* lie on the circle such that the chord *AB* is parallel to the *x* axis and has length 6 units, as shown in Figure 1 above.

(b) Find the coordinates of A and the coordinates of B.	(3)
---	-----

Question 5 continued
TOTAL TAKA DIZO
TOTAL7 MARKS

(6)

6 Given that

$$f(x) = 5e^x - 2, x \in \mathbb{R}$$

- (a) sketch, on separate axes, the curve with equation
 - (i) y = f(x)
 - (ii) y = |f(x)|

On each sketch, show clearly the coordinates of any points where the curve crosses or meets the coordinate axes **and** state the equations of any asymptotes.

- (b) Find the exact solutions of the equation |f(x)| = 1. (3)
- (c) Write down the **set** of values of *k* for which the equation

$$|f(x)| = k$$

has one real solution for x. (1)

Question 6 continued	
	TOTAL 10 MADIZE
	TOTAL 10 MARKS

7 A sequence is defined such that	
$x_n = (-1)^n, n \geqslant 1$	
(a) Show that the sequence is periodic and state its order.	(2)
(b) Given an integer $k > 1$, state the value of $\sum_{n=1}^{k} x_n$ in the case where	
(i) k is odd,	
(ii) k is even.	(2)

TOTAL 4 MARKS	Question 7 continued
TOTAL 4 MARKS	
!!!	TOTAL 4 MARKS

8 (a) Prove that

$$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv 2\csc\theta, \quad \theta \neq n\pi, \ n \in \mathbb{Z}$$

(4)

(b) Hence solve, for $0 < x \le \pi$,

$$\frac{\sin 3x}{1+\cos 3x} + \frac{1+\cos 3x}{\sin 3x} = \sqrt{5}$$

Give your answers to 2 decimal places.	(5)

Question 8 continued
TOTAL 9 MARKS

9	Theo is studying a population of rabbits. The population p at the time t weeks after the study
	started is modelled to be

$$p = 0.07t^2 + 4t + 110, \quad t \geqslant 0$$

- (a) Write down the size of the population at the start of the study. (1)
- (b) Show that, according to this model, the size of the population will increase over time. (2)

Theo creates a second model for how p varies with t, which is given by

$$p = \frac{440a \,\mathrm{e}^{0.1t}}{1 + a \,\mathrm{e}^{0.1t}}, \quad t \geqslant 0$$

- (c) Using your answer to part (a), show that $a = \frac{1}{3}$. (3)
- (d) Hence use the second model to determine the time taken for the population to reach a size of 300 rabbits. (3)
- (e) Determine the long-term behaviour of Theo's two models **and** hence suggest which model is best for Theo's study. (3)

Question 9 continued					

Question 9 continued					

Question 9 continued	
	TOTAL 12 MARKS

10	The	curve	C	has	the	equation
-----------	-----	-------	---	-----	-----	----------

$$x = 4 \tan(3y)$$

(a) Show that the point
$$P\left(4\sqrt{3}, \frac{\pi}{9}\right)$$
 lies on C . (1)

(b) Find
$$\frac{dx}{dy}$$
 and hence show that $\frac{dy}{dx} = \frac{4}{48 + 3x^2}$. (3)

(c) Find the equation of the normal to C at the point P , giving your answer in the form	
y = mx + c, where m and c are exact constants to be found.	(4)

Question 10 continued
TOTAL 8 MARKS

11

Figure 2 above shows a parallelogram *OABC*.

Relative to the fixed origin O, the position vector of A is $\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ and the position vector of C is $2\mathbf{i} - \mathbf{j} + \mathbf{k}$.

(a) Find a unit vector in the direction \overrightarrow{OB} .

The lines OB and AC are the diagonals of the parallelogram.

The lines intersect at the point P.

- (b) Use vectors to prove that the diagonals of the parallelogram bisect each other. (4)
- (c) By using the cosine rule on triangle *OPC*, or otherwise, find the angle *OPC*. (4)

Question 11 continued

Question 11 continued

Question 11 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	—
	—
	_
	_
	_
TOTAL 11 MARKS	

12 (a) Prove that the square root of 6 is irrational.

(4)

Irini wants to prove that $\sqrt{2} + \sqrt{3}$ is irrational.

She claims that:

"Since $\sqrt{2}$ is irrational and $\sqrt{3}$ is irrational, $\sqrt{2} + \sqrt{3}$ is also irrational."

(b) Explain why Irini's reasoning is **incorrect**.

In your answer, you should state the assumption she has made and use a suitable counterexample to disprove her assumption.

(2)

Jack provides a correct proof of the fact that $\sqrt{2} + \sqrt{3}$ is irrational.

Part of his proof is shown below.

Assume
$$\sqrt{2} + \sqrt{3} = r$$
, where r is rational

$$\Rightarrow r^2 = (\sqrt{2} + \sqrt{3})^2$$

$$\Rightarrow r^2 = 5 + 2\sqrt{6}$$

$$\Rightarrow \sqrt{6} = \frac{r^2 - 5}{2}$$

which is a contradiction because ...

(c) Complete the final line of Jack's proof to explain why he has obtained a contradiction. (1)

Question 12 continued

Question 12 continued

Question 12 continued
TOTAL 7 MARKS

13

Figure 3 above shows a sketch of the curve C with equation $y = x\sqrt{4 - x^2}$ for $0 \le x \le 2$. The point P is a maximum point on C. The region R, shown shaded in the figure, is bounded by the curve C and the line segment OP, where O is the origin.

Showing your method clearly, find the exact area of R.

Give your answer in the form $a + b$	2, where a and b are rational numbers to be found.	(10)
--------------------------------------	--	------

Question 13 continued		

Question 13 continued		

Question 13 continued	
END OF PAPER	TOTAL 10 MARKS
	TOTAL FOR PAPER IS 100 MARKS
	Copyright © 2019 crashMATHS Ltd.

