

A Level Maths

Bronze Set C, Paper 1

2019 © crashMATHS Limited

Question	Solution	Partial Marks	Guidance
1	$4x^{3}-8xy-4x^{2}\frac{dy}{dx}+4y^{3}\frac{dy}{dx}=0 *$	<u>B1</u> <u>M1</u>	Correct differentiation of the $4x^2y$ term (<u>underlined</u>) Attempts derivative of y^4 term obtaining expression of the form $Ay^3 dy/dx$, $A \neq 0$, (double underlined)
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x^3 - 2xy}{x^2 - y^3}$	A1	Fully correct differentiation. Do not necessarily need to rearrange for $dy/dx = \dots$ If they obtain (*) (with no spurious terms), it is A1
	So at (2, 3), $\frac{dy}{dx} = \frac{2^3 - 2(2)(3)}{2^2 - 3^3} = \frac{4}{23}$ So eq of tangent at (2, 3) is	M1*	Substitutes (2, 3) into their dy/dx to obtain value for gradient. May do this once they reach the stage (*) and <u>then</u> re-arrange for dy/dx which is OK This is not formally dependent on the 1 st M1 <u>but does</u> requires them to have at least two y terms in their derivative coming from y^4 and $4x^2y$
	y-3 = $\frac{4}{23}(x-2)$ ⇒ 23y-69 = 4x-8	M1(dep*)	Writes down equation of the tangent in any form using their gradient. Or if using $y = mx + c$, need to see them employ a complete method to find c
	$\Rightarrow 4x - 23y + 61 = 0$	A1 [6]	Correct equation of the tangent in the correct form (allow non-zero
2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1	Need not see a tableShows equality for at least one positive integer from 1 to 6inclusiveComplete method to show the equality for $n = 1, 2, 3, 4, 5, 6$
	Hence $1^3 + 2^3 + + n^3 \equiv (1 + 2 + + n)^2$ for all positive integers from 1 to 6 inclusive	A1 [3]	Complete and convincing proof. Need to show equality (or 'truth') for all the required cases and then give a final conclusion at the end <u>SC: completely correct proof by exhaustion with conclusion</u> excluding the cases $n = 1$ and $n = 6$ can score SCB2

A Level Maths – CM Paper 1 (for Edexcel) / Bronze Set C

3	$y = \int \left(\frac{2-x^2}{x}\right) dx$ $= \int \left(\frac{2}{x} - x\right) dx$	M1*	States or implies intention to integrate RHS (no need to select a method to integrate here)
	$= 2\ln x - \frac{1}{2}x^2 + c$	M1 A1 oe	Obtains integral of the form $A\ln(x) + bx^2 + c$ where $a, b \neq 0$ Obtains correct integral including constant oe Allow $\ln(x^2)$ and $2\ln(x)$ (though $ x $ is redundant here as $x > 0$)
	When $x = 1, y = 4$, so $4 = -\frac{1}{2} + c \Rightarrow c = \frac{9}{2}$	M1(dep*)	Uses initial conditions to find the value of their constant
	Hence $y = 2 \ln x - \frac{1}{2}x^2 + \frac{9}{2}$	A1 [5]	Obtains correct expression for y in terms of x Allow $\ln(x^2)$ and $2\ln(x)$
4 (a)	$g(x) = (4+3x)^{-\frac{1}{2}}$		
	$= (4)^{-\frac{1}{2}} \left(1 + \frac{3}{4}x\right)^{-\frac{1}{2}}$	B1	$4^{-1/2}$ or $\frac{1}{2}$ outside the brackets or appearing as constant term in candidate's expansion
	$=\frac{1}{2}\left(1+\left(-\frac{1}{2}\right)\left(\frac{3}{4}x\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)}{2!}\left(\frac{3}{4}x\right)^{2}+\dots\right)$	M1	Expands $(1 + px)^{-1/2}$ obtain 2 out of the 3 required terms, $p \neq 1$, unsimplified or better
	$= \frac{1}{2} \left(1 - \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right)$	A1	Expands $(1 + px)^{-1/2}$ correctly obtaining first 3 terms, $p \neq 1$, unsimplified or better. Note for M1 A1 : need to use a <u>consistent</u> p on the RHS, but not necessarily on the LHS
	$=\frac{1}{2} - \frac{3}{16}x + \frac{27}{256}x^2 + \dots$	A1 A1 [5]	Correct constant and linear term (allow $-0.1875x$) Correct quadratic term (allow $0.10546875x^2$). Cao
4 (b)	$\frac{1}{\sqrt{4+3\left(\frac{1}{3}\right)}} = \frac{1}{\sqrt{5}} \qquad = \frac{1}{\frac{5}{5}} \sqrt{5} (\text{so } k = 1/5)$	B1 [1]	Cao Allow just value of k stated

4 (c)	$\frac{1}{5}\sqrt{5} = \frac{1}{2} - \frac{3}{16}\left(\frac{1}{3}\right) + \frac{27}{256}\left(\frac{1}{3}\right)^2$ $\Rightarrow \frac{1}{5}\sqrt{5} = \frac{115}{256}$	M1	Substitutes $x = \frac{1}{3}$ into their (a) and equates this to their $k\sqrt{5}$ M1 can be implied for $\sqrt{5} = \frac{1}{k} \left(\text{their} \frac{115}{256} \right)$ with their <i>k</i> from (b)
	$\Rightarrow \sqrt{5} = \frac{575}{256}$	A1 cao [2]	Obtains correct approximation as a fraction Allow use of approximation notation throughout
5 (a)	$(x-1)^{2} - 1 + (y-5)^{2} - 5^{2} - 8 = 0$ $\Rightarrow (x-1)^{2} + (y-5)^{2} = 34$	M1 A1	Correct method to complete the square on the <i>x</i> terms or the <i>y</i> terms So e.g. need to see $(x-1)^2 - 1^2$ or $(y-5)^2 - 5^2$ oe Obtains $(x-1)^2 + (y-5)^2 = 34$ (or constant on LHS)
	So centre is $(1, 5)$ Radius is $\sqrt{34}$	A1ft A1ft [4]	Correct centre ft their LHS Correct radius ft their RHS
5 (b)	X coordinates are 3 units either side of the centre		
	So x coordinate of A is -2 and x coordinate of B is 4	B1	States correct <i>x</i> coordinates at any stage (allow labels switched)
	$\sqrt{34-9} = \sqrt{25} = 5$, so chord is 5 units above the centre	M1	Uses Pythagoras to find vertical distance of centre from chord using their (a)
	Hence $A = (-2, 10), B = (4, 10)$	A1 [3]	Correct <i>y</i> coordinate of <i>A</i> and <i>B</i>

6 (b)	$5e^x - 2 = 1 \Longrightarrow x = \ln\frac{3}{5}$	B1	Correct exact value of <i>x</i>
	Or $5e^x - 2 = -1 \Longrightarrow x = \ln\frac{1}{5}$	M1 A1 [3]	Obtains correct equation satisfied by second value of x Correct second exact value of x Notes on squaring: they can square to obtain $(5e^x - 2)^2 = 1$, but then need to employ a complete method to find $e^x = \dots$, $e^x = \dots$
6 (c)	Values of k are $\{k \in \mathbb{R} : k \ge 2\} \cup \{k = 0\}$	B1 [1]	Correct set of values of k Allow omission of $\in \mathbb{R}$ Allow equivalent sets e.g. $\{k \in \mathbb{R} : k \ge 2 \cup k = 0\}$
7 (a)	$x_1 = -1, x_2 = 1, x_3 = -1, x_4 = 1$, etc. so sequence is periodic with order 2	B1 B1 [1]	Illustrates the series is periodic by writing out at least the first four terms and conclusion, e.g. 'hence periodic', 'as required', Allow e.g. 'if n is odd, the term is -1 , if n is even, the term is 1, (so the terms oscillate between -1 and 1). Hence periodic' (or better) States correct order of the sequence
7 (b) (i)	If k is odd, the sum is -1	B1 [1]	Cao
7 (b) (ii)	If k is even, the sum is 0	B1 [1]	Cao

8 (a)	$\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} \equiv \frac{\sin^2\theta + (1+\cos\theta)^2}{\sin\theta(1+\cos\theta)}$	M1*	Attempts a common denominator
	$\equiv \frac{\sin^2 \theta + 1 + 2\cos \theta + \cos^2 \theta}{\sin \theta (1 + \cos \theta)}$	M1**(dep*)	Expands brackets and uses $\sin^2\theta + \cos^2\theta = 1$
	$\equiv \frac{2 + 2\cos\theta}{\sin\theta(1 + \cos\theta)}$	A1	Correct workings up to this stage
	$\equiv \frac{2}{\sin \theta}$ $\equiv 2 \operatorname{cosec} \theta \mathbf{AG}$	A1 [4]	Shows the result convincingly with no errors seen
6 (c)	Eq equivalent to $2 \operatorname{cosec} 3\theta = \sqrt{5} \Rightarrow \sin 3\theta = \frac{2}{\sqrt{5}}$	M1	Writes equation correctly in terms of cosec3 θ and attempts to rearrange for sin(3 θ)
	Principal value of $3\theta = \sin^{-1}\left(\frac{2}{\sqrt{5}}\right) = 1.1071$ Other values in range are:	M1	Attempts to find the principal value of 3θ using $\sin^{-1}(\text{their } 2/\sqrt{5})$. Their equation should be well-defined
	$\pi - 1.1071 = 2.0344$ and $1.1071 + 2\pi = 7.3903$ and $2.0344 + 2\pi = 8.3176$	A1	Obtains at least two correct values of 3θ in range (this can include the correct principal value)
	Hence $3\theta = 1.1071$, 2.0344, 7.3903, 8.3176	M1	Method to find all four values of 3θ in range and divides them each
	$\Rightarrow \theta = 0.37, \ 0.68, \ 2.46, \ 2.77$	A1 cao [5]	by 3 to find the values of θ Obtains correct values of θ to 2dp. Cao
9 (a)	110	B1 [1]	Cao
9 (b)	$\frac{dp}{dt} = 0.14t + 4$	M1	Obtains correct dp/dt
	And since $\frac{dp}{dt} > 0$ for all $t \ge 0$, the size of the population increases with time	A1 [2]	States $dp/dt > 0$ for all time $t \ge 0$ and concludes Note 1: allow ≥ 0 for dp/dt Note 2: do not allow $dp/dt > 0$ for all time, but DO allow 'for all time in the model'

9 (b)	<u>Alt 1:</u>		
ALT	$0.07t^{2} + 4t + 110 = 0.07\left(t^{2} + \frac{400}{7}t\right) + 110$		
	$= 0.07 \left(t + \frac{200}{7} \right)^2 - 0.07 \left(\frac{200}{7} \right)^2 + 110$		
	$= 0.07 \left(t + \frac{200}{7} \right)^2 + \frac{370}{7}$	M1	Correctly completes the square (or correctly obtains value of t at which minimum occurs)
	Minimum point of the curve is at $t = -200/7$ and since curve		OR ALT 2: computes discriminant = -14.8
	is U shaped, the size of the population increases with time since <i>t</i> in the model is only for $t \ge 0$ (or <i>t</i> in model > –	A1	Explains why the population increases with time with reference to domain of <i>t</i> in model (similar reasoning if using discriminant)
	200/7)	[2]	
9 (c)	$110 = \frac{440a}{1+a}$	M1*	Sets their $110 = 440a/(1+a)$
	$1+a \Rightarrow 110(1+a) = 440a$	M1(dep*)	Solves for <i>a</i>
	$\Rightarrow 110 + 110a = 440a$		
	$\Rightarrow 330a = 110$		
	$\Rightarrow a = \frac{1}{3}$ AG	A1	Shows that $a = 1/3$ convincingly with no errors seen
		[3]	SCB1 only for a 'backward approach', i.e. using $a = 1/3$, finding that Model 2 gives $p(0) = 110$ and this agrees with Model 1
9 (d)	$330 = \frac{440 e^{0.1t}}{3 + e^{0.1t}}$		
	$3 + e^{0.1t}$ $\Rightarrow 990 + 330 e^{0.1t} = 440 e^{0.1t}$	M1*	Equates model 2 with $a = 1/3$ to 330 and solves for $e^{0.1t}$
	$\Rightarrow e^{0.1t} = 9$		
	$\Rightarrow 0.1t = \ln 9$	M1(dep*)	Takes natural logs on both sides with use of $ln(e) = 1$ seen
	$\Rightarrow t = \frac{1}{0.1} \ln 9 = 21.9$	A1	Correct time. Awrt 22. No need to add on 'weeks' at the end, but
	So about 22 weeks	[3]	A0 if the wrong units given

9 (e)	In Model 1, p grows without bound / $p \rightarrow \infty$ as $t \rightarrow \infty$	B1*		Correct description of the long term behaviour of model 1
	In Model 2, (<i>p</i> saturates with) $p \rightarrow 440$ as $t \rightarrow \infty$	B1*		Correct description of long term behaviour of model 2
	So Model 2 is best because the population cannot grow without bound / the population size is limited by resources	B1(dep*)	3]	Suggests that Model 2 is better and gives a suitable reason in context. Just need a reason about why $p \rightarrow \infty$ is not realistic ora
10 (a)	When $y = \frac{\pi}{9}$, $x = 4 \tan\left(3\frac{\pi}{9}\right) = 4 \tan\frac{\pi}{3} = 4\sqrt{3}$ Hence <i>P</i> lies on the curve	B1 [1	1]	Shows <i>P</i> lies on the curve <u>ALT: note if they sub in <i>x</i> and use arctan to find <i>y</i>, they must use its domain to justify their choice of 'θ'</u>
10 (b)	$\frac{dx}{dy} = 12 \sec^2 3y$	B1		Correct dx/dy
	$\Rightarrow \frac{dy}{dx} = \frac{1}{12 \sec^2 3y}$	M1		For use of $dy/dx = 1/(dx/dy)$
	$\Rightarrow \frac{dy}{dx} = \frac{1}{12(1 + \tan^2 3y)} = \frac{1}{12 + 12\tan^2 3y}$	M1		Use of $\sec^2(3y) = 1 + \tan^2(3y)$ and attempts to replace $\tan^2(3y)$ with
	Now, $\tan(3y) = x/4 \Rightarrow \frac{dy}{dx} = \frac{1}{12 + 12\left(\frac{x}{4}\right)^2}$			
	Hence (multiplying by 4 gives) $\frac{dy}{dx} = \frac{4}{48 + 3x^2}$ AG	A1 [4	4]	Convincing proof of the given result with no errors
10 (c)	at P, $\frac{dy}{dx} = \frac{1}{12 + 3(4\sqrt{3})^2} = \frac{4}{48 + 3(4\sqrt{3})^2} = \frac{1}{48}$	M1		Substitutes $x = 4\sqrt{3}$ into dy/dx OR dx/dy
	so gradient of the normal is –48 Equation of normal is then	A1ft		Uses their value for the gradient at $x = 4\sqrt{3}$ to write down the gradient of the normal
	$y - \frac{\pi}{9} = -48(x - 4\sqrt{3})$	M1		Uses their gradient of the normal with the coordinates of P to write down the equation of the normal in any form Obtains correct equation of the normal in the required form
	$\Rightarrow y = -48x + 192\sqrt{3} + \frac{\pi}{9}$	A1 cao	4]	Exact values for m and c only

11 (a)	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AC}$ = (i + 3j + 2k) + (2i - j + k) = 3i + 2j + 3k	B1	Correct direction vector \overrightarrow{OB}
	Unit vector is then $\widehat{OB} = \frac{1}{\sqrt{3^2 + 2^2 + 3^2}} (3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ $= \frac{1}{\sqrt{22}} (\mathbf{i} + \mathbf{j} + \mathbf{k})$	M1 A1 oe [3]	Correct method to find the unit vector ft their \overrightarrow{OB} Correct unit vector oe

11 (b) 'Geometric'	Let P_1 be the midpoint of <i>OB</i> and P_2 be the midpoint of <i>AC</i>		There are multiple methods to this question. We only give two ways and their mark schemes. Mark others similarly
	$\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OP_1}$ Also have		
	$\overrightarrow{OP_2} = \overrightarrow{OC} + \frac{1}{2}\overrightarrow{CA}$	M1	Shows intention to find position vector of midpoint of AC
	$= \frac{1}{2}\overrightarrow{OC} + \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{CA} (\text{using } \overrightarrow{OC} = \frac{1}{2}\overrightarrow{OC} + \frac{1}{2}\overrightarrow{AB})$		
	$=\frac{1}{2}(\overrightarrow{OC}+\overrightarrow{AB}+\overrightarrow{CA})$	M1	Attempts to associate position vector of midpoint of AC with the midpoint of the line BC
	$=\frac{1}{2}\overrightarrow{OB}=\overrightarrow{OP_{1}}$	A1	Obtains $\overrightarrow{OP_2} = \frac{1}{2}\overrightarrow{OB}$ or better
	Hence $\overrightarrow{OP_1} = \overrightarrow{OP_2}$ and the lines bisect each other	A1 [4]	Shows the result convincing with explanation of the result
		[4]	
11 (b) ALT	$\frac{1}{2}\overrightarrow{OB} = \frac{1}{2}(3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$		
'Computati			
onal'	$\overrightarrow{AC} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) - (\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}) = (\mathbf{i} - 4\mathbf{j} - \mathbf{k})$	M1* A1	Attempts to find a vector \overline{AC}
		AI	Correct vector \overrightarrow{AC}
	Then		
	$\overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC} = (\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) + \frac{1}{2}(\mathbf{i} - 4\mathbf{j} - \mathbf{k})$	M1(dep*)	Uses a complete method to show the lines bisect each other
	$=\frac{1}{2}(3\mathbf{i}+2\mathbf{j}+3\mathbf{k})$		
	Since $\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AC}$, the diagonals of the	A1	Shows the result convincingly with conclusion
	parallelogram bisect each other	[4]	

11 (c)	$ OP = \frac{1}{2} OB = \frac{1}{2}\sqrt{3^2 + 2^2 + 3^2} = \frac{1}{2}\sqrt{22}$	M1	Employs a correct method to find the length of each side
	$ PC = \frac{1}{2} \overline{AC} = \frac{1}{2} \sqrt{1^2 + 4^2 + 1^2} = \frac{3}{2} \sqrt{2}$ $ \overline{OC} = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6}$	A1	Correct lengths of each side of the triangle
	So by the cosine rule $\cos(\angle OPC) = \frac{\left(\frac{1}{2}\sqrt{22}\right)^2 + \left(\frac{3}{2}\sqrt{2}\right)^2 - \left(\sqrt{6}\right)^2}{2\left(\frac{1}{2}\sqrt{22}\right)\left(\frac{3}{2}\sqrt{2}\right)}$ $4\sqrt{11}$	M1	Uses the correct formula for the cosine rule with their side lengths leading to a value for the angle
	$\Rightarrow \cos(\angle OPC) = \frac{4\sqrt{11}}{33}$ $\Rightarrow \angle OPC = 66.29^{\circ}$	A1 [4]	Obtains the correct angle. Awrt 66° (or 1.2 radians)
11 (c) ALT	$\cos(\angle OPC) = \frac{\overrightarrow{OB} \cdot \overrightarrow{CA}}{ \overrightarrow{OB} \overrightarrow{CA} }$	M1	Writes down correct expression for the angle
	$= \frac{(3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) \cdot (-\mathbf{i} + 4\mathbf{j} + \mathbf{k})}{\sqrt{3^2 + 2^2 + 3^2} \sqrt{1^2 + 4^2 + 1^2}}$ $= \frac{-3 + 8 + 3}{\sqrt{22} \sqrt{18}}$	M1 A1	Employs correct method to find dot product of their two vectors and the lengths of these vectors Correct expression for the cosine of the angle
	So $\Rightarrow \cos(\angle OPC) = \frac{4\sqrt{11}}{33}$ $\Rightarrow \angle OPC = 66.29^{\circ}$	A1 [4]	Obtains correct angle

12 (a)	Assume for a contradiction that the square root of 6 is		
	rational, i.e. $\sqrt{6} = \frac{a}{b}$, $a, b \in \mathbb{Z}, b \neq 0$ and a, b coprime	M1	Uses the method of proof by contradiction by writing $\sqrt{6} = \frac{a}{b}$ with
	Then $6 = \frac{a^2}{b^2} \Rightarrow a^2 = 6b^2$		<i>a</i> and <i>b</i> correctly defined Allow $hcf(a, b) = 1$ or $gcd(a, b) = 1$ instead of 'coprime'
	$\Rightarrow a^{2} \text{ is a multiple of } 6$ $\Rightarrow a \text{ is a multiple of } 6, \text{ so } a = 6k \text{ for some } k \in \mathbb{Z}$	A1	Shows that <i>a</i> is a multiple of 6 using a logical argument
	Then $(6k)^2 = 6b^2 \Rightarrow b^2 = 6k^2$ $\Rightarrow b^2$ is a multiple of 6 $\Rightarrow b$ is a multiple of 6	M1(dep*)	Uses the result that <i>a</i> is a multiple of 6 to show that <i>b</i> is a multiple of 6
	However this is a contradiction because <i>a</i> and <i>b</i> were taken to be coprime Hence $\sqrt{6}$ is irrational	A1 [4]	Complete and convincing proof showing logically that $\sqrt{6}$ is irrational. They must explain what the contradiction is and conclude 'hence irrational'. All 3 previous marks are necessary here.
12 (b)	She has assumed that the sum of any two irrational numbers is irrational which is not necessarily true	B1	States the assumption she has made
	For example, take $a = \sqrt{2}$ and $b = 1 - \sqrt{2}$ which are both irrational. Then $a + b = 1$ which is rational/not irrational Hence Irini's reasoning is incorrect	B1 [2]	However/but etc. in place of 'for example' counts as a blue element Uses a counter-example to disprove her assumption + at least one of the blue elements (or similar) to form a coherent argument <u>SC: if B0 B0 scored but a suitable counter example is used to</u> <u>disprove the assumption (i.e. assumption not explicitly stated),</u> <u>allow SCB1</u>
12 (c)	(This is a contradiction because) $\frac{r^2-5}{2}$ is rational but $\sqrt{6}$ is	B1	Explains the contradiction
	not / irrational	[1]	

13	This scheme is split into sections. The stage 2 section has 3 alternatives, so consider these as you mark	M1	This is a strategy/process mark. We are looking for a complete method. Need to see the candidate do the following (in any order): 1) attempt to find the coordinates of <i>P</i> using differentiation
	Do not forget the process mark \rightarrow		<u>2</u>) attempt to find the integral $\int_0^a x\sqrt{4-x^2} dx$, $a \neq 0, 0 \le a \le 2$
	Do not for get the process mark	[1 mark max.]	3) use their value for the integral and the coordinates of P to find the area of R
Store 1.	$\frac{dy}{dx} = \sqrt{4 - x^2} - \frac{x^2}{\sqrt{4 - x^2}}$	M1	Attempts to find the derivative using the product rule. Need to see an attempt of the chain rule to tackle the $\sqrt{(4-x^2)}$
Stage 1: finding <i>P</i>	At P, $\frac{dy}{dx} = 0 \Rightarrow \sqrt{4 - x^2} = \frac{x^2}{\sqrt{4 - x^2}}$	M1	Sets their derivative = 0 and solves for x (their derivative must yield a 3TQ)
	$\Rightarrow 4 - x^{2} = x^{2}$ $\Rightarrow x^{2} = 2$ $\Rightarrow x = \sqrt{2}$	A1	Obtains correct x coordinate of P
	So $P = (\sqrt{2}, 2)$	[3 marks max.]	NB: <i>y</i> coordinate of <i>P</i> not needed
munig	$\int_{0}^{\sqrt{2}} x\sqrt{4-x^{2}} dx = \left[\frac{2}{3}(4-x^{2})^{\frac{3}{2}} \times -\frac{1}{2}\right]_{0}^{\sqrt{2}}$	M1*	Uses the reverse chain rule obtaining integral of the form $A(4-x^2)^{3/2}, A \neq 0$
$\int_0^a x\sqrt{4-x^2} dx$	$= \left[-\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \right]_{0}^{\sqrt{2}}$	A1	Obtains correct integral (ignore limits)
	$= \left[-\frac{1}{3} (4 - x^2)^{\frac{3}{2}} \right]_0^{\sqrt{2}}$ $= -\frac{1}{3} (4 - 2)^{\frac{3}{2}} + \frac{1}{3} (4 - 0)^{\frac{3}{2}}$	M1(dep*)	Substitutes correct limits (ft their <i>P</i>) in the correct order
	$=\frac{8}{3}-\frac{2}{3}\sqrt{2}$	A1 [4 marks	Obtains correct value for the integral For this mark, allow a non-exact value (awrt 1.72)
		max.]	

Stage 3: finding area of <i>R</i>	Area of the triangle is $\frac{1}{2}(\sqrt{2})(2) = \sqrt{2}$ So area of <i>R</i>	M1	Complete method to find the area of <i>R</i> using their value for the integral and their area of the triangle
	$= \frac{8}{3} - \frac{2}{3}\sqrt{2} - \sqrt{2}$ $= \frac{8}{3} - \frac{5}{3}\sqrt{2}$	A1 cao [2 marks max.]	Correct exact area of <i>R</i> , final answer
		[10]	
Stage 2 ALT 1	Use $u = 4 - x^2$ to obtain: $\int_0^{\sqrt{2}} x\sqrt{4 - x^2} dx = \int_4^2 \cancel{x} \sqrt{u} \left(-\frac{1}{2\cancel{x}} du \right)$ $= -\frac{1}{2} \int_4^2 \sqrt{u} du$	M1*	Chooses a suitable substitution, attempts to change the area element and obtains integrand in their new variable Obtains correct integrand (ignore limits)
	$= -\frac{1}{2} \int_{4}^{2} \sqrt{u} du$ $= \left[-\frac{u^{\frac{3}{2}}}{3} \right]_{4}^{2}$	M1(dep*)	Obtains integral of the form $Bu^{3/2}$, $B \neq 0$, and substitutes correct limits (ft their <i>P</i>) in the correct order
	$= -\frac{2^{\frac{3}{2}}}{3} + \frac{4^{\frac{3}{2}}}{3}$ $= \frac{8}{3} - \frac{2}{3}\sqrt{2}$	A1 [4 marks max.]	Obtains correct value for the integral For this mark, allow a non-exact value (awrt 1.72)

	Use $u = \sqrt{4} - x^2$ to obtain:		
Stage 2 ALT 2	$\int_{0}^{\sqrt{2}} x\sqrt{4-x^{2}} dx = \int_{2}^{\sqrt{2}} \not x u \left(-\frac{\sqrt{4-x^{2}}}{\not x} du \right)$	M1*	Chooses a suitable substitution, attempts to change the area element and obtains integrand in their new variable
	$= -\int_{2}^{\sqrt{2}} u^2 du$	A1	Obtains correct integrand (ignore limits)
	$= \left[-\frac{u^3}{3} \right]_2^{\sqrt{2}}$ $= -\frac{\sqrt{2}^3}{3} + \frac{2^3}{3}$	M1(dep*)	Obtains integral of the form Bu^3 , $B \neq 0$, and substitutes correct limits (ft their <i>P</i>) in the correct order
	$=\frac{8}{3}-\frac{2}{3}\sqrt{2}$	A1 [4 marks max.]	Obtains correct value for the integral For this mark, allow a non-exact value (awrt 1.72)
	Use $x = 2\sin\theta$ to obtain		Mark other trig substitutions similarly
Stage 2 ALT 3	$\int_{0}^{\sqrt{2}} x\sqrt{4-x^2} dx = \int_{0}^{\frac{\pi}{4}} (2\sin\theta)\sqrt{4-(2\sin\theta)^2} (2\cos\theta) d\theta$	M1*	Chooses a suitable substitution, attempts to change the area element and obtains integrand in their new variable
	$= 8 \int_0^{\frac{\pi}{4}} \sin \theta \cos^2 \theta$	A1	Obtains correct integrand (ignore limits)
	$= \left[-8\frac{\cos^3\theta}{3}\right]_0^{\frac{\pi}{4}}$ $= -\frac{8\cos^3\left(\frac{\pi}{4}\right)}{3} + \frac{8\cos^3\theta}{3}$	M1(dep*)	Obtains integral of the form $B\cos^3\theta$, $B \neq 0$, and substitutes correct limits (ft their <i>P</i>) in the correct order
	$=\frac{8}{3}-\frac{2}{3}\sqrt{2}$	A1 [4 marks max.]	Obtains correct value for the integral For this mark, allow a non-exact value (awrt 1.72)