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A computer company sells three types of laptops to three nearby stores. The table below shows 
the quantity of each laptop ordered by each store and the total cost of their purchase. 

Using the information in the table, form and solve a matrix equation to find the price of each 
laptop. Show your workings clearly.                                                                                          (4)

Store Laptop A Laptop B Laptop C Total cost 
(£)

Store A

Store B

Store C

13

8

11

9 10

1 6

10 15

17 080

8 920

21 100
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2 The cubic equation

5x3 – x2 + 2x + 1 = 0

has roots α, β and γ. 

Without solving the equation, find a cubic equation, with integer coefficients, that has roots 
(α + 4), (β + 4) and (γ + 4).                                                                                                        (4)
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Question 2 continued
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The curve C has polar equation 

The point P lies on C such that the tangent to C at P is perpendicular to the initial line. 

Given that O is the pole, find the exact length OP.                                                                    (7)
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r = 3+ 2sinθ,    0 ≤ θ ≤ π
2
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The line l1 passes through the points A and B has the equation r = (i – 2j + k) + t(4i – j – k), 
where t is a scalar parameter. 

The line l2 has the equation                             .  

Determine whether the lines l1 and l2 intersect, are skew or neither.  
Show all of your working.                                                                                                          (5)

x − 4
2

= 1− y
3

= z
5
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5 (a) By starting with the exponential definition of cosh x, show that

(4)

(b) Hence, show that

(3)

Figure 1 above shows a sketch of the curve C with equation y = 12arcosh x – 5x,  x ≥ 1. The 
curve C has a maximum point P. 

Given that the coordinates of P are                     , 

(c) find the values of the constants a, b and c.                                                                            (5)

arcosh x = ln x + x2 −1⎡
⎣

⎤
⎦,    x ≥1

d
d x
(arcosh x) = 1

x2 −1

(a,  b ln5 + c)

y

x

C

P

Figure 1
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Question 5 continued
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The matrix P is defined such that 

 

The matrix P represents a linear transformation, T, of the plane. 

(a) Show that the origin is the only point invariant under T.                                                     (2)

(b) Describe the invariant lines of the transformation T.                                                           (6)

P =
 7     24
24   − 7

⎛
⎝⎜

⎞
⎠⎟
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The complex number u = 3 + 3i. 

Given that u solves the quadratic x2 + ax + b = 0, 

(a) find the values of a and b.                                                                                                     (3)

(b) Show the complex numbers 1, i and u on an Argand diagram.                                            (1)

(c) On the same Argand diagram as (b), shade the region that is included in the set 

(3)

(d) Using your diagram, calculate the value of      for the point in X for which arg z is least.   (3)

X = z∈! : z −1 ≤ z − i{ }∩ z∈! : z − u ≤1{ }

z
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(a) Using induction, prove that, for          , 

(4)

(b) Use part (a) and standard results for series to show that 

 

where a, b and c are constants to be found.                                                                                (3)

(c) (i) Find the value of n for which                                 .                                                         (2)

    (ii) Hence, write down the values of n for which                                 .                                (1)

n∈!

r
r=1

n

∑ = n
2
(n +1)

(−r2 + 4r −1) =
r=1

n

∑ 1
6
n(an2 + bn + c)

(−r2 + 4r −1)
r=1

n

∑ = 0

(−r2 + 4r −1)
r=1

n

∑ > 0
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A particle is attached to the end of a spring and the system is immersed in a fluid. The system 
is connected to a forced oscillator which causes the system to oscillate. 

The motion of the system can be modelled by the differential equation

where x m is the vertical displacement of the particle from its equilibrium position and t is the 
time, in seconds, after the motion begins. 

The particle starts at equilibrium and is given an initial velocity of 3 m s–1.

Find an expression for x in terms of t.                                                                                       (9)

2 d
2x
dt 2

+ 40 dx
dt

+128x = 2e−2t
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(a) Prove that the first four terms in the Maclaurin series of cos(x) are 

(4)

(b) Hence, find an expression for the nth term in the Maclaurin series of cos(x).                     (1)        

(c) Deduce that 

(1)

1− x
2

2!
+ x

4

4!
− x

6

6!
+ ...

x5 cos(x2 ) = (−1)n x4n+5

(2n)!n=0

∞

∑
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