AS Maths Key Skills Check 9

Name: ______

1. $A(-3, 4)$ and $B(1, 6)$. The perpendicular bisector of <i>AB</i> intersects the coordinate axes at the points <i>C</i> and <i>D</i> .	(a) $y = -2x + 3$
(a) Find the equation of the perpendicular bisector of AB .	
(b) Find the points C and D and hence find the area of the triangle OCD , where O is the origin.	
2. Find the set of values of <i>x</i> that satisfy $\frac{27}{2x-1} < 3$	Multiply by $(2x - 1)^2$ to ensure positivity or consider the cases of $x < \frac{1}{2}$, $x > \frac{1}{2}$ separately and "glue" solutions together Range of values are $x > 5$, $x < \frac{1}{2}$. Solution set is $\left\{x \in \mathbb{R} : x > 5 \text{ or}/\bigcup x < \frac{1}{2}\right\}$
3. $f(x) = 2x^3 + ax^2 - x + 6$ has a factor $(x + 1)$	Using $f(-1) = 0$ gives $a = -5$
Find the value of a and hence factorise $f(x)$ fully into a product of linear factors.	Then you will find that $f(x) = (x + 1)(x - 2)(2x - 3)$
4. The line <i>l</i> has equation $y = 5 - 2x$. The line <i>l</i> is parallel to the tangent to the curve $y = \frac{1}{2}x^4 - \frac{5}{3}x^3 - \frac{1}{2}x^2 + 4x + 1$ at the point <i>P</i> . Find the possible coordinates of the point <i>P</i> . [hint: your answer to Q3 will be helpful]	$\frac{dy}{dx} = 2x^3 - 5x^2 - x + 4$. If <i>l</i> is parallel to the tangent, then $2x^3 - 5x^2 - x + 4 = -2$, which gives $2x^3 - 5x^2 - x + 6 = 0$ as options for the <i>x</i> coordinates of <i>P</i> . Using Q3, the <i>x</i> coordinates are thus -1, 2 and 3/2. Then substituting into the curve to find the <i>y</i> coordinates (NOT <i>l</i> since <i>l</i> is only parallel to the tangent) gives $\left(-1, -\frac{4}{3}\right)$, $\left(2, \frac{5}{3}\right)$ and $\left(\frac{3}{2}, \frac{89}{32}\right)$