Worksheet: Proof CM

1 (a) Prove that $x^{2}+4 x+12>0$ for all integers x.
(b) It is claimed that " $n^{2}+3 n+1>0$ for all integers n "

Disprove this statement using a suitable counter-example.
(2) Emily wants to prove that the sum of the squares of any two odd numbers is even. Her proof is shown below.

Let the odd numbers be $2 n-1$ and $2 n+1$ for integers n.
Then

$$
\begin{aligned}
(2 n-1)^{2}+(2 n+1)^{2} & =4 n^{2}-4 n+1+4 n^{2}+4 n+1 \\
& =8 n^{2}+2 \\
& =2\left(4 n^{2}+1\right)
\end{aligned}
$$

which is a multiple of 2 and so even.
Hence, the sum of the squares of any two odd numbers is even.

Her proof is not correct.
(a) Explain why.
(b) Provide a correct proof of the statement.
(3) Let p and q be prime numbers, $p, q \neq k$, where k is an integer.

Given that $p+q$ is always even,
(a) state the value of k.
(b) Prove that $p+q$ is always even for all primes except k.

4 The claim is that if n is an integer, then $q=n^{2}-2$ is not divisible by 4 .
(a) Use exhaustion to prove that the statement is true for $4 \leq n \leq 7$.
[The rest of the question is A level only. It is broken down since it is a bit challenging.]
Now we will prove the claim in full.
(b) Consider the case when n is odd. Is n^{2} odd or even? What about $n^{2}-2$?

Hence, explain why it cannot be a multiple of 4 in this case.
(c) Use a similar process for the case when n is even to show the claim is not true in this case either.

5 (a) Prove that if n is even, then $(3 n)^{2}$ is even.
(b) Prove that if $(3 n)^{2}$ is even, then n is even.
[Hint for (b): consider factors]

6 [A level only]

For all real x, we have that

$$
(5 x-3)^{2}+1 \geq(3 x-1)^{2}
$$

Prove the statement using a proof by contradiction.
7 [A level only]
(a) Prove that the square root of 2 is irrational.
(b) Prove that the square root of 3 is irrational.
(c) Prove that the cube root of 5 is irrational.

8 [A level only]
Prove that there are an infinite number of primes.
(9) [A level only]
(a) Prove that, for all real and positive $x, x+\frac{25}{x} \geq 10$
(b) Give a counter-example to show that the statement is not necessarily true if x is real but negative.
(c) Is the statement ever true if x is negative?

10 Consider the statement

$$
\text { "If } 3 n^{2}+2 n \text { is even, then } n \text { is even" }
$$

In this question, you will prove this in three ways.

Method 1:

(a) Since $3 n^{2}+2 n$ is even, it can be written in the form $3 n^{2}+2 n=2 k$ for some integer k.

By considering factors, complete the proof.

Method 2:

(b) Write $3 n^{2}+2 n=n^{2}+\left(2 n^{2}+2 n\right)=2 k$ for some integer k.

Think about what you can deduce about n^{2} and complete the proof.

Method 3 [A level only]:

(c) Prove the statement by contradiction.

