

A Level Further Maths

Bronze Set A, Paper CP1 (Edexcel version)

Question	Solution	Partial Marks	Guidance
1 (a)	$f(2) = 2^{3} - 8(2)^{2} + 46(2) - 68$ = 8 - 32 + 92 - 68 = -24 + 24 = 0 (as required)	B1 [1]	Shows substitution of 2 into f and at least one intermediate step before arriving at 0
1 (b)	$f(x) = (x-2)(x^{2}-6x+34)$ $x^{2}-6x+34 = 0$ $\Rightarrow (x-3)^{2} = -25$ $\Rightarrow x-3 = \pm 5i$ $\Rightarrow x = 3 \pm 5i$ So roots are $3 \pm 5i$ and 2	M1 A1 M1* A1 A1	States or implies (x ± 2) is a factor of f and attempts to find other factor Correct other factor seen Complete method to solve their 3TQ for its complex roots M0 if their 3TQ has real roots ±5i appearing in their complex roots All three roots stated
1 (c)		[5] B1 [1]	All three roots plotted correctly on an Argand diagram Accept roots plotted as points or vectors Ignore any arguments or magnitudes
2 (a)	Enlargement of scale factor 3 about the origin	B1 B1 [2]	For "Enlargement" For "Scale factor 3" AND "centred/about at the origin/ <i>O</i> "
2 (b)	Reflection in the <i>x</i> axis followed by an enlargement of scale factor 3 about the origin	B1 B1ft [2]	Reflection in x axis seen or associated with C Their "reflection" followed by their (a)

A Level Further Maths – CM Practice Paper CP1 (for Edexcel) / Bronze Set A

2 (c)	$\mathbf{ABC} = \begin{pmatrix} 3 & -6 \\ 3 & 9 \end{pmatrix}$	B1	Correct matrix for ABC seen or implied
	so $\mathbf{N} = \begin{pmatrix} 2+k & 9-k \end{pmatrix}$ det $\mathbf{N} = (3-k)(9-k) - (-9)(2+k)$ $= 27 - 12k + k^2 + 18 + 9k$	M1*	Finds N and uses a correct method to find its determinant
	$= k^{2} - 3k + 45$ Singular when det N = 0, i.e. $k^{2} - 3k + 45 = 0$ But $(-3)^{2} - 4(1)(45) = -171 < 0$, so the equation has no real	M1(dep*) A1	Sets their det $N = 0$ and uses a complete method to show it has no real solutions for k M0 if their 3TQ has real solutions Complete and convincing proof with no errors seen
	solutions. So N is never singular	[4]	
3 (a)	2 = A(r+1) + Br Let $r = 0$, then $2 = A$, so $A = 2$ Let $r = -1$, then $B = -2$	M1	Complete method to find one of <i>A</i> or <i>B</i>
	So $\frac{2}{r(r+1)} = \frac{2}{r} - \frac{2}{r+1}$	A1 [2]	Correct values of <i>A</i> and <i>B</i> stated or shown embedded into expression. Final answer

3 (b)	$\sum_{r=1}^{n} \frac{2}{r(r+1)}$		
	$=\sum_{r=1}^{n} \frac{2}{r} - \frac{2}{r+1}$		
	$= \left(\frac{2}{1} - \frac{2}{2}\right) + \left(\frac{2}{2} - \frac{2}{3}\right) + \dots + \left(\frac{2}{n-1} - \frac{2}{n}\right) + \left(\frac{2}{n} - \frac{2}{n+1}\right)$	M1*	Writes out at least three terms in the series, including the first and the last and either the second or penultimate
	$= 2 - \frac{2}{n+1}$ $= \frac{2n+2-2}{n+1}$ $= \frac{2n}{n+1}$	A1 M1(dep*) A1	Telescopes correctly to obtain the sum of the series Uses a common denominator to obtain their sum of the series in the required form Correct answer or p , q and r stated
	<i>n</i> +1	[4]	
3 (c)	$\sum_{r=1}^{n} \left(12 + \frac{6}{r(r+1)} \right) = 65 \Longrightarrow \sum_{r=1}^{n} 12 + \sum_{r=1}^{n} \frac{6}{r(r+1)} = 65$	M1*	Attempts to use linearity (can be implied)
	6n (5	A1	Obtains term 12 <i>n</i>
	$\Rightarrow 12n + \frac{1}{n+1} = 65$	Alft	Obtains correct sum of $\frac{6}{r(r+1)}$ ft their (b)
	$\Rightarrow 12n(n+1) + 6n = 65(n+1)$		I(I+1)
	$\Rightarrow 12n^2 + 12n + 6n - 65n - 65 = 0$		
	$\Rightarrow 12n^2 - 47n - 65 = 0$ $\Rightarrow (12n + 13)(n - 5) = 0$	M1(dep*)	Obtains a 3TQ and uses a complete method to solve it
	Since $n > 0, n = 5$	Al	Correct value of <i>n</i> ISW
		[5]	If there are any additional solutions, do not ISW and give A0

4 (a)	Let $n = 1$, $\mathbf{A}^{1} = \begin{pmatrix} a^{1} & 0 \\ 0 & b^{1} \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, so true for $n = 1$ Assume true for $n = k$, i.e. $\mathbf{A}^{k} = \begin{pmatrix} a^{k} & 0 \\ 0 & b^{k} \end{pmatrix}$	B1	Shows the statement is true for $n = 1$ and makes the statement
	Then for $n = k + 1$, we have $\mathbf{A}^{k+1} = \mathbf{A}^{k} \mathbf{A}$ $= \begin{pmatrix} a^{k} & 0 \\ 0 & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	M1* M1(dep*)	Makes the assumption and shows intention to multiply \mathbf{A}^k by \mathbf{A} (either way around) Multiples matrices together with at least two correct entries
	$= \begin{pmatrix} a^{k+1} & 0\\ 0 & b^{k+1} \end{pmatrix}$ so true for $n = k + 1$	A1	Fully correct matrix multiplication
	Therefore, <u>if true for $n = k$</u> , it has been shown to be <u>true for</u> $\underline{n = k + 1}$. <u>Since true for $n = 1$</u> , it follows by induction that <u>it</u> <u>is true for all</u> $\underline{n \in \mathbb{Z}^+}$	A1 [5]	Complete and convincing proof with no errors seen and a conclusion containing all underlined elements oe 'Since true for $n = 1$ ' in this conclusion can contribute to the 1 st B1
4 (b)	$4^{p} = 1024 \Rightarrow p = 5$ Then $q = (-3)^{5} = -243$	B1 B1ft [2]	Correct value of p Correct value of q ft their p
5 (a)	$\cos(nx) + i\sin(nx) = e^{inx}$ $\cos(nx) - i\sin(nx) = e^{-inx}$	M1	Writes down de-Moivre's Theorem and replaces x with $-x$ to obtain a second equation
	Adding equations gives, $2\cos(nx) = e^{inx} + e^{-inx}$ $\Rightarrow \cos(nx) = \frac{e^{inx} + e^{-inx}}{2}$ AG	A1 [2]	Adds the two equations and obtains the given result convincingly with no errors seen

5 (b)	$e^{inx} = e^{inx} - e^{-inx}$	B1	Correct expression oe
	$\sin(nx) = \frac{1}{2i}$	[1]	
5 (c)	$\cos(4x)\sin x = \left(\frac{e^{4ix} + e^{-4ix}}{2}\right) \left(\frac{e^{ix} - e^{-ix}}{2i}\right)$	M1*	Multiplies correct expression for $cos(4x)$ with their (b)
	$=\frac{1}{2}\left(\frac{e^{5ix}-e^{3ix}+e^{-3ix}-e^{-5ix}}{2i}\right)$	M1(dep*)	Obtains a 4 term expression with at least two terms correct
	$=\frac{1}{2}\left(\frac{e^{5ix}-e^{-5ix}}{2i}-\frac{e^{3ix}-e^{-3ix}}{2i}\right)$		
	$=\frac{1}{2}(\sin(5x) - \sin(3x))$	A1 [3]	Complete and convincing proof with no errors seen
5 (d)	$=\frac{9\pi}{2}\int_0^{\pi}(\sin(5\theta)-\sin(3\theta))d\theta+11\pi\int_0^{\pi}\sin\thetad\theta$	M1*	Uses part (b) to express integral in terms of $sin(kx)$ terms only No need to use linearity – only looking for the correct expression
	$=\frac{9\pi}{2}\left[-\frac{1}{5}\cos(5\theta)+\frac{1}{3}\cos(3\theta)\right]_{0}^{\pi}+11\pi\left[-\cos\theta\right]_{0}^{\pi}$	A1	Allow omission of factor of ½ from (b) for the M1 Correct integration of the correct expression
	$=\frac{9\pi}{2}\left(\frac{1}{5}-\frac{1}{3}+\frac{1}{5}-\frac{1}{3}\right)+11\pi(1-1)$	M1(dep*)	Substitutes limits in the correct order (condone one sign slip) All $cos(0)$ or $cos(\pi)$ terms should be evaluated for this mark
	$= -\frac{6}{5}\pi + 22\pi$ 104		
	$=\frac{1}{5}\pi$	A1 [4]	Correct exact value of the integral

6 (a)	$\frac{1}{\frac{\pi}{2} - 0} \left[k \sin[(4k - 1)x] \right]_0^{\frac{\pi}{2}} = \frac{4}{\pi}$ $k \sin\left[(4k - 1)\frac{\pi}{2} \right] - k \sin(0) = 2$ $\Rightarrow k(-1) = 2$ $\Rightarrow k = -2$	M1 M1 B1 A1 [4]	Correct equation seen Limits do not need to be substituted for this mark M0 for an equation involving f' in integral form until the integration has been done and they obtain f again Substitutes limits into the equation in the correct order u Uses $sin((4k - 1)\pi/2) = -1$ Correct value of k
6 (b)	Hence mean value of f over the interval is $\frac{1}{\pi} \int_0^{\pi} -2\sin(-9x)dx$ $= -\frac{2}{\pi} \left[\frac{1}{9} \cos(-9x) \right]_0^{\pi}$ $= -\frac{2}{\pi} \left(-\frac{1}{9} - \frac{1}{9} \right)$	M1* A1ft	Expression for mean value of f in integral form (allow omission of $1/\pi$ and ignore any incorrect prefactors) ft their k Correct expression ft their k
	$=\frac{4}{9}\pi$	A1 [3]	Correct final answer
7 (a)	$4(2+\lambda) + 2(-3-2\lambda) - (1+3\lambda) = 5$	M1	Complete method to find λ
	$8 + 4\lambda - 6 - 4\lambda - 1 - 3\lambda = 5$ $\Rightarrow \lambda = -\frac{4}{3}$	A1	Correct λ
	So coordinates of intersection are $\left(\frac{2}{3}, -\frac{1}{3}, -3\right)$	A1 [3]	Correct coordinates of intersection

7 (b)	$\cos\theta = \frac{(\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) \cdot (4\mathbf{i} + 2\mathbf{j} - \mathbf{k})}{\sqrt{1^2 + (-2)^2 + 3^2} \sqrt{4^2 + 2^2 + (-1)^2}}$	M1	Correct unsimplified expression for the cosine of the angle between the line and the normal to the plane
	$\Rightarrow \cos\theta = \frac{4-4-5}{\sqrt{14}\sqrt{21}} = -\frac{5}{\sqrt{14}\sqrt{21}}$ $\Rightarrow \theta = 100.076$	A1	Correct angle between the line and the normal to the plane
	so acute angle between line and the plane is 10.1°	A1 [3]	Correct acute angle
7 (c)	Need a vector perpendicular to $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ and $4\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ So components of this vector satisfy		
	x - 2y + 3z = 0 and $4x + 2y - z = 0$	M1	One of the two equations seen
	i.e. $5x + 2z = 0$	A1	Solves correctly for the ratio between two of the variables
	Pick $x = 4$, then $z = -10$ and $y = -13$, so $4i - 10j - 13k$ is	Δ1	Correctly finds a vector that is perpendicular to the plane
	perpendicular to the plane	111	Multiples of this should of course be accepted
	4(0)-13(1)-10(2) = -33, so the equation of the plane is	M1	Method to use their perpendicular vector and the point the plane passes through to find " <i>d</i> "
	4x - 13y - 10z = -33	A1	Correct equation of the plane oe
			ALT for first 3 marks (use of cross product):
			M1 – complete method to find the cross-product between the
			two vectors
		[5]	A1 – all three components correct
8 (a) (i)	$x = y + 100 \frac{dy}{dt} \Longrightarrow \frac{dx}{dt} = \frac{dy}{dt} + 100 \frac{d^2y}{dt^2}$	M1*	Attempts to differentiate the second equation with respect to <i>t</i>
	$100\frac{d^2y}{dt^2} + \frac{dy}{dt} = \frac{1}{100}y - \frac{1}{100}\left(y + 100\frac{dy}{dt}\right)$	M1(dep*)	Substitutes in the first equation in and replaces the x by their $"y + 100y"$
	$100\frac{d^2y}{dt^2} + 2\frac{dy}{dt} = 0 \Rightarrow \frac{d^2y}{dt^2} + 0.02\frac{dy}{dt} = 0 \mathbf{AG}$	A1 [3]	Complete and convincing proof with no errors seen

8 (a) (ii)	$m^{2} + 0.02m = 0 \Rightarrow m(m + 0.02) = 0$, so $m = 0$ or $m = -0.02$	M1	Forms the auxillary equation and uses a complete method to solve it
	Hence, (since the equation is homogenous), the general solution is $y = A + Be^{-0.02t}$	A1 A1 [3]	Solution of the form $y = Ae^{\alpha t} + Be^{\beta t}$ Correct general solution
8 (a) (iii)	$x = A + Be^{-0.02t} + 100(-0.02Be^{-0.02t})$ $\Rightarrow x = A - Be^{-0.02t}$	M1 A1 [2]	Attempts to use their y to find x Correct general solution for x
8 (b)	$x_0 = A - B$ $y_0 = A + B$	M1	Parts (i) and (ii) of this question should be marked together Forms two correct equations for their constants using the initial conditions
	$2A = x_0 + y_0 \Rightarrow A = \frac{1}{2}(x_0 + y_0)$ and $-2B = x_0 - y_0 \Rightarrow B = \frac{1}{2}(y_0 - x_0)$	A1ft	Correct constants for their solutions ft their (a/ii) and (a/iii)
(i)	Hence:		
(1)	$x = \frac{1}{2}(x_0 + y_0) - \frac{1}{2}(y_0 - x_0)e^{-0.02t}$	A1	Correct particular solution for the amount of chemical X in tank A
(ii)	$y = \frac{1}{2}(x_0 + y_0) + \frac{1}{2}(y_0 - x_0)e^{-0.02t}$	A1	Correct particular solutions for the amount of chemical X in tank B
		[4]	
8 (c)	As $t \to \infty$, $e^{-0.02t} \to 0$, so $x \to \frac{1}{2}(x_0 + y_0)$ and	B1	Convincing illustration with consideration of long-term behaviour of the exponential term
	$y \rightarrow \frac{1}{2}(x_0 + y_0)$ as $t \rightarrow \infty$ (as required)	[1]	
8 (d)	e.g. Both pipes between the tanks pump liquid at the same constant rate	B1 [1]	Explanation