

A Level Large Data Set

Practice Questions

2018 © crashMATHS Limited

Question	Scheme
1	
(a)	Mean rainfall = $\frac{0.025(7) + 1.5(4) + 3(3)}{7 + 4 + 3} = \underline{1.083}$ mm
	Standard deviation = $\sqrt{\left(\frac{0.025^2(7) + 1.5^2(4) + 3^2(3)}{7 + 4 + 3}\right) - (1.083)^2} = 1.182}$ mm
(b)	Rainfalls between (about) $0 \le r \le 2.26$ mm are within one standard deviation of the mean
(c/i)	Not suitable because her sample only consisted of 14 days from one location and from one month
(c/ii)	e.g. Use more data from more <u>UK</u> locations and months
	Must reference UK locations

Question	Scheme
2	
(a)	e.g. Cloud cover
	Accept 'Daily mean windspeed on the Beaufort scale'
(b)	 Generate (some) two digit random numbers Enumerate the data points. For each random number chosen, select the corresponding data point on the enumerated list. If the random number does not correspond to a data point (due to gaps or being out of range), ignore it and choose another. If a random number is repeated, ignore it and choose another. Continue in this way until 15 data points are chosen
(c)	Not reliable since he only used 15 data points, which is unlikely to be a good representation of the weather in Lemming in 2015
(d)	The large data set only contains data for the months May-October and not the whole year

Question	Scheme
3	
(a/i)	The large data set contains data for the months May-October and there are 184 days between (1 st) May and (31 st) October.
(a/ii)	e.g. The large data set contains gaps
(b)	(Starting from 1 st May), each day the total amount of rainfall in Leuchars in 2015 <u>decreases</u> by 0.0027 mm
(c)	$x = 3 \Rightarrow T = 16.551 - 0.0027(3) = \underline{16.5429}$
(d)	Idea that The daily mean rainfall in Leuchars (in 2015) does not decrease at a steady rate, but fluctuates
	IGNORE references to 'extrapolation' – the question asks for discussion about the unreliability for any day in Leuchars in 2015, not just those outside of the data range

Question	Scheme
4	
(a)	Simple random sampling
(b)	e.g. easier/quicker/etc. to process / analyse/etc. the data since the large data set has a lot of data points
(c)	4
(d)	Idea that The large data set does not contain information on cloud cover for Beijing

Question	Scheme
5	
(a)	Temperature outliers are $T < 5$ and $T > 37.8$ Pressure outliers are $p < 993$ and $p > 1025$ But all values of T are between 9.7 and 27.2, so there are no temperature outliers
(b)	<u>Negative</u> Ignore quantifiers e.g. 'weak, strong'
(c)	For every $1^{\circ}\mathrm{C}$ increase in the temperature (in 2015 in Beijing), the pressure <u>decreases</u> by 0.71
(d)	p = -0.71(8.5) + 1022 = 1015.965 hPa
(e)	Unreliable because the large data set only contains data for May-October, and so December is outside of the data range (used to produce the regression line) Accept 'extrapolation' but they must make reference to the fact that the LDS only contains data for May-October October
(f)	Use a greater number/sample size of days from <u>Beijing</u> No marks for reference to 'Asia'/'other places', since Beijing is the only place in Asia the LDS has data for
(g)	Idea that he should consider data from other places in Asia, but Beijing is the only place in Asia that the LDS has data for

Question	Scheme
6	
	$8.45 \times 1.15 = \frac{194.35}{n}$ $\Rightarrow n = \frac{194.35}{8.45 \times 1.15} = 20$ so the size of Zain's sample is 20 [Here it has been used that 1knot = 1.15 mph]