GCSE
Paper 2H

Practice Set B

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
1	(a)		1	1	B1 : a circle around the number 1. Any ambiguities in selection or additional sections is B0
	(b)	12 numbers in total 2 in intersection so prob is $\frac{2}{12}=\frac{1}{6}$	$\frac{2}{12}$	2	M1 : 12 numbers in total, seen or implied (i.e. by denominator)
					A1: correct probability oe
2	(a)	$5(8)-3=37$	37	1	B1: cao
	(b)	$\begin{aligned} & 148=5 n-3 \\ & \Rightarrow 5 n=151 \\ & \Rightarrow n=\frac{151}{5}(=30.2) \end{aligned}$ so n is not a term in the sequence (since n must be an integer)	$\begin{gathered} \text { No + } \\ \text { justificatio } \\ \mathrm{n} \end{gathered}$	2	M1 : sets $148=5 n-3$
					A1 : concludes 'no' + suitable justification, i.e. conveys idea that n must be an integer, finding the $30^{\text {th }}$ value and $31^{\text {st }}$ value, etc. [Special case - use of listing: M1 - for first 30 terms in sequence correctly listed, A1 - concludes 'no' + explanation]

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

	Working	Answer	Mark	Notes
3	$\begin{aligned} & \frac{x}{y+2}=\frac{1}{3} \\ & \Rightarrow 3 x=y+2 \\ & \Rightarrow y=3 x-2 \end{aligned}$	proof	3	M1: for $\frac{x}{y+2}=\frac{1}{3}$ or equivalent
				$\mathrm{dM1}$: attempts to remove fractions, i.e. multiplies by 3 and $y+2$
				A1: complete and convincing proof
4	$\sqrt{7.2^{2}+3.4^{2}}=7.962 \ldots$	Material A	5	P1 : for sight of $\sqrt{7.2^{2}+3.4^{2}}$
	amount of material needed is $2(7.2)+2(3.4)+7.962 \ldots=29.162 \ldots$			P1 : method to find total amount of material required using some value for the length of the diagonal
	for material \mathbf{A}, need to buy $30 \mathrm{~m}=$			A1 : $29.16 \ldots \mathrm{~m}$ needed
	$10.32+8.26+8.26=£ 26.84$			P1 : process to find which material is be cheaper
	for material \mathbf{B}, need to buy $20 \mathrm{~m}=$ £27.18			A1: states material $\mathbf{A}+$ working

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
5				5	NB: There are two possible answers. If credit is given for Way 1 (resp. Way 2) in (i), can only score for Way 1 (resp. Way 2) in (ii)
	(i)				Way 1 : B1, B1, B1 : enlargement, scale factor 2, centre (0,0)
					Way 2: B1, B1 : translation, (by) $\binom{-1}{1}$
	(ii)				Way 1: B1, B1 : translation, (by) $\binom{-1}{1}$
					Way 2: B1, B1, B1 : enlargement, scale factor 2 , centre ($-1,1$)
6		$\begin{aligned} & \sin (B C A)=\frac{3.1}{4.6} \\ & \quad B C A=42.369 \ldots \\ & \text { so } \\ & B C D=180-42.369 \ldots-58=79.63 \ldots \end{aligned}$	79.6	4	M1 : sight of the ratio $\frac{3.1}{4.6}$
					A1 : correct size of $B C A$ or $A B C$
					M1 : method to use properties about angles on a straight line to find $B C D$
					A1 : correct answer. Awrt 80°

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
7		$(0.1)(0.2)\left(\frac{40}{120}\right)+(0.1)(0.3)(0.4)+$	57\%	5	P1 : for $0.2 \times \frac{4}{12}$ or $0.2 \times \frac{8}{12}$ or 0.3×0.4 or 0.3×0.6
		$\begin{aligned} & +(1-x)(0.1)(0.5)=0.04 \\ & x=0.573 \ldots \end{aligned}$			A1 : correct percentage lost or gained of $1^{\text {st }}$ year from module 1 and 2
					P1 : multiplies percentage lost/gained from m 1 or m 2 in $1^{\text {st }}$ year by 0.1 OR idea that losing 4% overall means not losing 40% in $1^{\text {st }}$ year. This mark can be implied by an equation or appropriate subtraction
					P1 : forms a correct equation using their percentage losses/gains to find $\%$ needed in m 3 . [Condone if their $\%$ gives an upper bound of what they can lose as opposed to what they need to gain]
					A1 : awrt 57\%

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
8		$\begin{aligned} & (2 h+3)^{2}=4 h^{2}+6 h+6 h+9 \\ & (h+1)^{2}=h^{2}+h+h+1 \\ & \quad(2 h+3)^{2}-(h+1)^{2} \\ & \text { so }=4 h^{2}+12 h+9-\left(h^{2}+2 h+1\right) \\ & \quad=3 h^{2}+10 h+8 \end{aligned}$	proof	4	M1 : expands one of the brackets correctly (need not simplify)
					A1 : both brackets expanded correctly
					M1 : attempts to collect like terms ft their expansions. Condone incorrect distribution of negative sign in second bracket
					A1 : obtains correct quadratic convincingly or states values of a, b and c with convincing working
9	(a)		Sahil is correct	1	B1 : 'sahil is correct' unambiguously circled or unambiguously made clear that that is their answer
	(b)		$(0,1)$	1	B1 : cao

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
11	(a)		suggestion	1	C1 : it is an outlier / much higher than the other temperatures
	(b)			2	B1 : correct cumulative frequencies: $3 \quad 18 \quad 35 \quad 40$ [NB: may be implied and/or seen near the table]
					B1: fully correct CF graph
	(c)		81	1	B1 : answer between $80 \leq T \leq 82$
	(d/i)		limits	3	M1 : method to find lower or upper quartile, i.e. correct markings on graph
					A1: lower quartile between $75 \leq T \leq 77$
					A1 : upper quartile between $85 \leq T \leq 97$
	(d/ii)		Interquartile (range)	1	C1 : interquartile (range)
	(e)		$\underset{\mathrm{n}}{\text { explatio }}$	1	C1 : e.g. only used 40 days, 40 days may not represent temperature distribution for the whole year [Sample size too small is C 0 without reference to 'days' or 'temperature']

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

	Working	Answer	Mark	Notes
12	$\begin{aligned} & y=\left(x-\frac{7}{2}\right)^{2}-\left(\frac{7}{2}\right)^{2}+10 \\ & y=\left(x-\frac{7}{2}\right)^{2}-\frac{9}{4} \end{aligned}$	$\begin{aligned} & (3.5,- \\ & 2.25) \end{aligned}$	3	M1 : for $\left(x-\frac{7}{2}\right)^{2}-\left(\frac{7}{2}\right)^{2}$. Sight of $\left(x-\frac{7}{2}\right)-\left(\frac{7}{2}\right)^{2}$ is M1 BOD
				A1: for $\left(x-\frac{7}{2}\right)^{2}-\frac{9}{4}$.
				A 1 ft : Correct coordinates ft their completing the square
13	$(4-2 \sqrt{3}) \times r=x$	$8-4 \sqrt{3}$	4	P1 : links all the terms by a constant ratio
	$x \times r=16-8 \sqrt{3}$			P1 : forms an equation to find x or r
	$x \times\left(\frac{x}{4-2 \sqrt{3}}\right)=16-8 \sqrt{3}$			A1 : $x^{2}=4(4-2 \sqrt{3})^{2}$ or $r=2$
	$\begin{aligned} & \Rightarrow x^{2}=4(4-2 \sqrt{3})^{2} \\ & \Rightarrow x=8-4 \sqrt{3} \end{aligned}$			A1 : $x=8-4 \sqrt{3}$

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
14	(a)	$2^{2}+4(2)-2^{3}=4>0$	proof	2	M1 : substitutes 2 and 3 into the equation and evaluates it to be some number
		since there has been a change of sign, the equation has a solution between $x=2$ and $x=3$			C1 : explanation
	(b)	$\begin{aligned} & x^{3}=x^{2}+4 x \\ & x=\frac{x^{2}+4 x}{x^{2}}=\frac{x^{2}}{x^{2}}+\frac{4 x}{x^{2}}=1+\frac{4}{x} \end{aligned}$	proof	1	B1: shows the result convincingly

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
	(c)	$\begin{aligned} & x_{1}=1+\frac{4}{2.5}=2.6 \\ & x_{2}=1+\frac{4}{2.6}=2.5384615 \ldots \\ & x_{3}=1+\frac{4}{2.5384615 \ldots}=2.57575757 \ldots \end{aligned}$	2.57576	3	B1: $x_{1}=2.6$
					M1 : attempts to use their x_{1} to find x_{2}
					A1: correct value of x_{3}
			6	1	B1 : $k=6$
15		$\begin{aligned} & x=0.999 \ldots \\ & \underline{10 x=9.99 \ldots} \\ & 9 x=9 \\ & x=\frac{9}{9}=1 \end{aligned}$	proof	3	M1 : finds $10 x$
					M1 : finds $9 x$
					A1: complete and convincing proof

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
	(c)	$\begin{aligned} & y=3 x-2 \Rightarrow x=\frac{y+2}{3} \\ & \text { so } \mathrm{f}^{-1}(x)=\frac{y}{3}+\frac{2}{3} \\ & \mathrm{f}^{-1}(2)=\mathrm{g}(0) \Rightarrow \frac{4}{3}=4-\frac{1}{2} a \\ & \frac{1}{2} a=\frac{8}{3} \Rightarrow a=\frac{16}{3} \end{aligned}$	$\frac{16}{3}$	4	M1 : attempts to find $\mathrm{f}^{-1}(x)$
					A1 : $\operatorname{correct~} \mathrm{f}^{-1}(x)$
					dM 1 : uses $\mathrm{f}^{-1}(2)=\mathrm{g}(0)$ with their $\mathrm{f}^{-1}(x)$. [Can also put $-1 / 2$ into $\mathrm{g}(2 x+1)]$
					A1: correct value of a
18	(a)		$1: k$	1	B1: cao
	(b)	$\begin{aligned} & \overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A C}+\overrightarrow{C E} \\ & \overrightarrow{D A}=-k \mathbf{q} \\ & \overrightarrow{C B}=\mathbf{q}-\mathbf{p}, \text { so } \overrightarrow{C E}=k(\mathbf{q}-\mathbf{p}) \\ & \quad \overrightarrow{D E}=-k \mathbf{q}+\mathbf{p}+k(\mathbf{q}-\mathbf{p}) \\ & \text { so } \\ & \quad=(1-k) \mathbf{p} \end{aligned}$ so $D E$ is parallel to $A C$	proof	3	B1: $\overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A C}+\overrightarrow{C E}$ or $\overrightarrow{D E}=\overrightarrow{D B}+\overrightarrow{B E}$
					P1 : attempts to use the ratios to find one of the required paths (excl. AC)
					A1ft : complete and convincing proof, showing that $D E$ is a multiple of \mathbf{p} and with a conclusion

