

GCSE Paper 2H

Practice Set B

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)								
Que	estion	Working	Answer	Mark	Notes				
1	(a)		1	1	B1 : a circle around the number 1. Any ambiguities in selection or additional sections is B0				
	(b)	12 numbers in total	$\frac{2}{12}$	2	M1 : 12 numbers in total, seen or implied (i.e. by denominator)				
		2 in intersection	12		A1 : correct probability oe				
		so prob is $\frac{2}{12} = \frac{1}{6}$							
2	(a)	5(8) - 3 = 37	37	1	B1 : cao				
	(b)	148 = 5n - 3	No + justificatio n	2	M1 : sets $148 = 5n - 3$				
		$\Rightarrow 5n = 151$ $\Rightarrow n = \frac{151}{5} (= 30.2)$			A1 : concludes 'no' + suitable justification, i.e. conveys idea that n must be an integer, finding the 30^{th} value and 31^{st} value, etc.				
		so <i>n</i> is not a term in the sequence (since <i>n</i> must be an integer)			[Special case – use of listing: M1 – for first 30 terms in sequence correctly listed, A1 – concludes 'no' + explanation]				

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
3		$\frac{x}{y+2} = \frac{1}{3}$	proof	3	M1: for $\frac{x}{y+2} = \frac{1}{3}$ or equivalent			
		$\Rightarrow 3x = y + 2$			dM1: attempts to remove fractions, i.e. multiplies by 3 and $y + 2$			
		$\Rightarrow y = 3x - 2$			A1 : complete and convincing proof			
4		$\sqrt{7.2^2 + 3.4^2} = 7.962$	Material A + working	5	P1 : for sight of $\sqrt{7.2^2 + 3.4^2}$			
		amount of material needed is $2(7.2)+2(3.4)+7.962=29.162$	+ working		P1: method to find total amount of material required using some value for the length of the diagonal			
		for material \mathbf{A} , need to buy 30 m =			A1 : 29.16 m needed			
		10.32 + 8.26 + 8.26 = £26.84			P1 : process to find which material is be cheaper			
		for material B , need to buy 20 m = £27.18			A1 : states material A + working			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
5				5	NB: There are two possible answers. If credit is given for Way 1 (resp. Way 2) in (i), can only score for Way 1 (resp. Way 2) in (ii)			
	(i)				Way 1: B1, B1, B1: enlargement, scale factor 2, centre (0,0)			
					Way 2 : B1, B1 : translation, (by) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$			
	(ii)				Way 1: B1, B1 : translation, (by) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$			
					Way 2: B1, B1, B1: enlargement, scale factor 2, centre (-1, 1)			
6		$\sin(BCA) = \frac{3.1}{4.6}$	79.6	4	M1 : sight of the ratio $\frac{3.1}{4.6}$			
		BCA = 42.369			A1 : correct size of BCA or ABC			
		BCD = 180 - 42.369 58 = 79.63		M1 : method to use properties about angles on a straight line to find <i>BCD</i>				
					A1 : correct answer. Awrt 80°			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
7		$(0.1)(0.2)\left(\frac{40}{120}\right) + (0.1)(0.3)(0.4) + +(1-x)(0.1)(0.5) = 0.04x = 0.573$	57%	5	P1: for $0.2 \times \frac{4}{12}$ or $0.2 \times \frac{8}{12}$ or 0.3×0.4 or 0.3×0.6 A1: correct percentage lost or gained of 1 st year from module 1 and 2 P1: multiplies percentage lost/gained from m1 or m2 in 1 st year by 0.1 OR idea that losing 4% overall means not losing 40% in 1 st year. This mark can be implied by an equation or appropriate subtraction P1: forms a correct equation using their percentage losses/gains to find % needed in m3. [Condone if their % gives an upper bound of what they can lose as opposed to what they need to gain] A1: awrt 57%			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
8		$(2h+3)^2 = 4h^2 + 6h + 6h + 9$	proof	4	M1 : expands one of the brackets correctly (need not simplify)			
		$(h+1)^{2} = h^{2} + h + h + 1$ $(2h+3)^{2} - (h+1)^{2}$ so = 4h ² + 12h + 9 - (h ² + 2h + 1)			A1: both brackets expanded correctly			
					M1 : attempts to collect like terms ft their expansions. Condone incorrect distribution of negative sign in second bracket			
	$=3h^2+10h+8$	$=3h^2+10h+8$			A1 : obtains correct quadratic convincingly or states values of a , b and c with convincing working			
9	(a)		Sahil is correct	1	B1: 'sahil is correct' unambiguously circled or unambiguously made clear that that is their answer			
	(b)		(0,1)	1	B1 : cao			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
10		$y = \frac{360}{15} = 24$ An interior angle in B is $2y = 48$ So exterior angle in B is 132 If B is regular then $\frac{360}{x} = 132 \Rightarrow x = 2.72, \text{ which is not possible}$	proof	4	P1 : for $(y =)\frac{360}{15}$ A1 : $2y = 48$ P1 : process to show that B cannot be regular, i.e. by considering exterior angle of B . Can also look at interior angles of B by considering $180(x-2) = 48x$ (sight of this scores the P1) A1 : convincing proof			

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)

Qu	estion	Working	Answer	Mark	Notes
11	(a)		suggestion	1	C1: it is an outlier / much higher than the other temperatures
	(b)			2	B1 : correct cumulative frequencies: 3 18 35 40 [NB: may be implied and/or seen near the table]
					B1: fully correct CF graph
	(c)		81	1	B1 : answer between $80 \le T \le 82$
	(d/i)		limits	3	M1: method to find lower or upper quartile, i.e. correct markings on graph
					A1 : lower quartile between $75 \le T \le 77$
					A1 : upper quartile between $85 \le T \le 97$
	(d/ii)		Inter- quartile (range)	1	C1 : interquartile (range)
	(e)		explanatio n	1	C1 : e.g. only used 40 days, 40 days may not represent temperature distribution for the whole year
					[Sample size too small is C0 without reference to 'days' or 'temperature']

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)								
Qu	estion	Working	Answer	Mark	Notes				
12		$y = \left(x - \frac{7}{2}\right)^2 - \left(\frac{7}{2}\right)^2 + 10$ $y = \left(x - \frac{7}{2}\right)^2 - \frac{9}{4}$	(3.5, – 2.25)	3	M1: for $\left(x - \frac{7}{2}\right)^2 - \left(\frac{7}{2}\right)^2$. Sight of $\left(x - \frac{7}{2}\right) - \left(\frac{7}{2}\right)^2$ is M1 BOD A1: for $\left(x - \frac{7}{2}\right)^2 - \frac{9}{4}$. A1ft: Correct coordinates ft their completing the square				
13		$(4-2\sqrt{3}) \times r = x$ $x \times r = 16 - 8\sqrt{3}$ $x \times \left(\frac{x}{4-2\sqrt{3}}\right) = 16 - 8\sqrt{3}$ $\Rightarrow x^2 = 4(4-2\sqrt{3})^2$ $\Rightarrow x = 8 - 4\sqrt{3}$	$8-4\sqrt{3}$	4	P1: links all the terms by a constant ratio P1: forms an equation to find x or r A1: $x^2 = 4(4-2\sqrt{3})^2$ or $r = 2$ A1: $x = 8-4\sqrt{3}$				

CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL) Working Notes Question Answer Mark $2^2 + 4(2) - 2^3 = 4 > 0$ M1: substitutes 2 and 3 into the equation and evaluates it to be 14 (a) proof 2 some number $3^2 + 4(3) - 3^3 = -6 < 0$ C1: explanation since there has been a change of sign, the equation has a solution between x = 2 and x = 3 $x^3 = x^2 + 4x$ (b) B1: shows the result convincingly proof $x = \frac{x^2 + 4x}{x^2} = \frac{x^2}{x^2} + \frac{4x}{x^2} = 1 + \frac{4}{x}$

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
	(c)	$x_1 = 1 + \frac{4}{2.5} = 2.6$	2.57576	3	B1: $x_1 = 2.6$			
	$x_2 = 1 + \frac{4}{2.6} = 2.5384615$	$x_2 = 1 + \frac{4}{2.6} = 2.5384615$			M1 : attempts to use their x_1 to find x_2			
		$x_3 = 1 + \frac{4}{2.5384615} = 2.57575757$			A1 : correct value of x_3			
			6	1	B1: $k = 6$			
15		x = 0.999	proof	3	M1 : finds 10x			
		$ \frac{10x = 9.99}{9x = 9} $			M1 : finds $9x$			
		$x = \frac{9}{9} = 1$			A1 : complete and convincing proof			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
16		$\frac{\sin 73}{BC} = \frac{\sin 51}{8}$ so $BC = 9.84427$ so area of triangle is $\frac{1}{2}(8)(9.84)\sin 56$ so area of shaded region is $36\pi - \frac{1}{2}(8)(9.84)\sin 56$	80	3	B1 : area of circle 36π B1 : angle $CAB = 73^{\circ}$ (seen or implied) P1 : $\frac{\sin 73}{BC} = \frac{\sin 51}{8}$ or $\frac{\sin 56}{AC} = \frac{\sin 51}{8}$ A1 : $BC = 9.84$ or $AC = 8.53$ P1 : area of triangle = $\frac{1}{2}(8)(9.84)\sin 56$ or $\frac{1}{2}(8)(8.53)\sin 73$ A1 : 80.452 Awrt 80 cm ² . Must have working to support answer			
17	(a)	$g(x) = a\left(\frac{1}{2}x - \frac{1}{2}\right) + b$ $= \frac{1}{2}ax - \frac{1}{2}a + b$	proof	1	B1 : substitutes $\frac{1}{2}x - \frac{1}{2}$ and obtains the result			
	(b)	$g(1) = 4 \Rightarrow \frac{1}{2}a + b - \frac{1}{2}a = 4$	4	1	B1: $b = 4$ [Alt: put $x = 0$ into $g(2x + 1)$]			

CM	CM GCSE Practice Papers / Set B / Paper 2H (V1 FINAL)								
Qu	estion	Working	Answer	Mark	Notes				
	(c)	$y = 3x - 2 \Rightarrow x = \frac{y + 2}{3}$	$\frac{16}{3}$	4	M1 : attempts to find $f^{-1}(x)$				
		so $f^{-1}(x) = \frac{y}{3} + \frac{2}{3}$			A1 : correct $f^{-1}(x)$				
		$\int_{0}^{3} f^{-1}(2) = g(0) \Rightarrow \frac{4}{3} = 4 - \frac{1}{2}a$			dM1 : uses $f^{-1}(2) = g(0)$ with their $f^{-1}(x)$. [Can also put – 1/2 into $g(2x + 1)$]				
		$\frac{1}{2}a = \frac{8}{3} \Rightarrow a = \frac{16}{3}$			A1: correct value of a				
18	(a)		1: <i>k</i>	1	B1 : cao				
	(b)	$\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE}$	proof	3	B1: $\overrightarrow{DE} = \overrightarrow{DA} + \overrightarrow{AC} + \overrightarrow{CE}$ or $\overrightarrow{DE} = \overrightarrow{DB} + \overrightarrow{BE}$				
		$\overrightarrow{DA} = -k\mathbf{q}$ $\overrightarrow{CB} = \mathbf{q} - \mathbf{p} \text{ , so } \overrightarrow{CE} = k(\mathbf{q} - \mathbf{p})$			P1 : attempts to use the ratios to find one of the required paths (excl. AC)				
		so $\overrightarrow{DE} = -k\mathbf{q} + \mathbf{p} + k(\mathbf{q} - \mathbf{p})$ = $(1-k)\mathbf{p}$			A1ft: complete and convincing proof, showing that DE is a multiple of \mathbf{p} and with a conclusion				
		so DE is parallel to AC							