GCSE
Paper 1H (Edexcel Version)

Set B

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working	Answer	Mark	Notes
1		$F=32 \times 0.12=3.84$	3.84	3	P1 : attempt at a suitable conversion, i.e: $1200 \mathrm{~cm}^{2}=1200 \times 10^{-4} \mathrm{~m}^{2} \quad \text { OR } \quad 32 \mathrm{~N} / \mathrm{m}^{2}=\left(32 \times 10^{-4}\right) \mathrm{N} / \mathrm{cm}^{2}$
					M1 : uses the formula with consistent units ft their conversion
					A1 : cao = 3.84
2		$\begin{aligned} & 3 x+2 y=7 \\ & x-2 y=-3 \end{aligned}$	$\begin{aligned} & x=1, \\ & y=2 \end{aligned}$	3	M1 : method to reduce system to one equation, i.e. elimination or substitution. Use of subtraction instead of addition (oe) is M0
					M1 : finds one variable and uses it to find the other variable
		$\Rightarrow x=1$ so $y=\frac{1+3}{2}=2$			A1: $x=1, y=2$ [NB: $2^{\text {nd }} \mathrm{M} 1$ is not dependent on $1^{\text {st }} \mathrm{M} 1$]
3	(a)	$\frac{1}{6}-\frac{2}{3}=-\frac{3}{6}=-\frac{1}{2}$	$-\frac{1}{2}$		M1 : correct method to add fractions either in terms of x or with 3 substituted A1 : cao

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working	Answer	Mark	Notes
3	(b)	$\frac{5}{3} \times \frac{1}{3}=\frac{5}{9}$	$\frac{5}{9}$	2	M1 : correct method to divide fractions either in terms of x or with 3 substituted
					A1: cao
4		$\mathrm{R}, \mathrm{~B}, \mathrm{Y}=2: 1: 4$ So 40 red, 20 blue, 80 yellow counters $\frac{5}{8} \times 40=25$, so 15 red counters left 9 blue counters left 48 yellow counters left Ratio is 15:9:48 $=5: 3: 16$	5:3:16	5	P1 : identifies ratio of $\mathrm{R}, \mathrm{B}, \mathrm{Y}$ as $2: 1: 4$. Can be implied, e.g. by $2 x+x+4 x\{=140\}$ or correct workings
					A1: 40 red, 20 blue, 80 yellow counters in the bag initially. Can be implied
					P1 : attempts to find number of red or yellow counters left in the bag (not blue!)
					A1 : two of 15 red counters left, 9 blue counters left, 48 yellow counters left
					A1 : correct simplified ratio $5: 3: 16$

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working	Answer	Mark	Notes
10	(a)	$\begin{aligned} 2^{32} \times 5^{25} & =2^{7} \times(2 \times 5)^{25} \\ & =128 \times 10^{25} \\ & =1.28 \times 10^{27} \end{aligned}$	1.28×10^{27}	2	M1 : for grouping the (2×5). Can be implied by e.g. 10^{25}
					A1 : cao
	(b)	$\begin{aligned} & a=\frac{54.6 \times 10^{9}}{3 \times 10^{8}}=182 \mathrm{~s} \\ & b=\frac{402 \times 10^{9}}{3 \times 10^{8}}=1340 \mathrm{~s} \\ & \text { so } b-a=1158=1.158 \times 10^{3} \mathrm{~s} \end{aligned}$	1.158×10^{3}	4	P1 : uses time $=$ distance/speed to find either a or b. Must see $\times 10^{6}$ for the 'million' in the distance, but condone if unit consistency not accounted for
					A1: correct value of a or b.
					A1 : correct values of a and b. Values must be identified as a or b.
					A1ft : correct value in standard form of $b-a \mathrm{ft}$ their a and b. [NB: Values must be identified as a or b or clearly implied, i.e. through their value of $b-a$]

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working	Answer	Mark	Notes
11	(a)	$\begin{aligned} \operatorname{gf}(x) & =\mathrm{g}\left(4-x^{2}\right) \\ & =2\left(4-x^{2}\right)+3 * \\ & =11-2 x^{2} \end{aligned}$	$11-2 x^{2}$	2	M1 : for sight of *
					A1: $11-2 x^{2}$
	(b)	$\mathrm{gf}(2)=11-8=3$	$\underline{1}$	3	M1 : substitutes 2 into their (a)
		so			dM 1 : attempts to evaluate h at their 3
		$\operatorname{hgf}(2)=\mathrm{h}(3)=\frac{1}{3(3)-1}=\frac{1}{8}$			A1: cao
					Alternative: $\begin{align*} \operatorname{hgf}(x) & =\mathrm{h}\left(11-2 x^{2}\right) \\ & =\frac{1}{3\left(11-2 x^{2}\right)-1} \tag{M1} \end{align*}$ so $\operatorname{hgf}(2)=\frac{1}{3\left(11-2(3)^{2}\right)-1}=\frac{1}{8} \quad(\mathrm{dM} 1) \quad(\mathrm{A} 1) \mathrm{dM} 1$ for substitution

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working $\begin{aligned} & \sqrt{175}=\sqrt{25 \times 7}=\sqrt{25} \sqrt{7}=5 \sqrt{7} \\ & \sqrt{63}=\sqrt{9 \times 7}=\sqrt{9} \sqrt{7}=3 \sqrt{7} \\ & \sqrt{175}-\sqrt{63}=5 \sqrt{7}-3 \sqrt{7}=2 \sqrt{7} \end{aligned}$	Answer	Mark	Notes
12		$\begin{aligned} & \sqrt{175}=\sqrt{25 \times 7}=\sqrt{25} \sqrt{7}=5 \sqrt{7} \\ & \sqrt{63}=\sqrt{9 \times 7}=\sqrt{9} \sqrt{7}=3 \sqrt{7} \\ & \sqrt{175}-\sqrt{63}=5 \sqrt{7}-3 \sqrt{7}=2 \sqrt{7} \end{aligned}$	$2 \sqrt{7}$	4	M1 : attempts to simplify $\sqrt{175}$ or $\sqrt{63}$
					A1: for $\sqrt{175}=5 \sqrt{7}$
					A1 : for $\sqrt{63}=3 \sqrt{7}$
					A1 : cao
13	(a)		answer	1	B1 : answer in the range $-1.825 \leq c \leq-1.75$.
	(b)		answer	1	B1 : answer of (x, y), with $1.20 \leq x \leq 1.25$ and $-2.6875 \leq y \leq-2.625$
	(c)		answer	1	B1 : two roots in the ranges $3.25 \leq x_{1} \leq 3.35$ and $-1 \leq x_{2} \leq-0.825$
	(d)		answer	1	B1 : answer of $(1 / 3 x, y) \mathrm{ft}$ their (b). Division only needs to be correct to 1dp

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

	Working	Answer	Mark	Notes
17	$m_{A B}=\frac{10-7}{-3-4}=-\frac{3}{7}$ y-intercept of $A B$ is thus $7=-\frac{3}{7}(4)+c \Rightarrow c=\frac{61}{7}$ line perp to $A B$ has gradient $\frac{7}{3}$ so y coordinate of Q given by $6=\frac{7}{3}(2)+c \Rightarrow c=6-\frac{14}{3}=\frac{4}{3}$ so $P Q=\frac{61}{7}-\frac{4}{3}=\frac{183}{21}-\frac{28}{21}=\frac{155}{21}$ so $O P: P Q=\frac{61}{7}: \frac{155}{21}=183: 155 \quad *$	proof	6	P1 : method to find the gradient of $A B$
				P1 : attempts to find y intercept of $A B$
				B1ft : correct perp. gradient to $A B$ ft their $-3 / 7$
				dP 1 : attempts to find y coordinate of Q
				A1 : correct y coordinates for P and Q
				A1 : complete an convincing proof, showing clearly how $P Q$ is obtained and the final given result

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question	Working	Answer	Mark	Notes
18	$\frac{360}{8}=45^{\circ}$ area of triangle $=$ $\frac{1}{2} \times r \times r \times \sin 45=\frac{1}{2} r^{2} \times \frac{\sqrt{2}}{2}$ $=\frac{1}{4} r^{2} \sqrt{2}$ so area of octagon is $8 \times \frac{1}{4} r^{2} \sqrt{2}=2 r^{2} \sqrt{2}$	proof	4	B1: $\sin 45=\frac{\sqrt{2}}{2}$ oe (e.g. $\frac{1}{\sqrt{2}}$)

CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)

Question		Working	Answer	Mark	Notes
19	(a)		2	1	B1 : cao
	(b)		sketch	4	B1 : circle centred at $(2,0)$. [Does not need to be labelled, but centre needs to be roughly shown to have $(2,0)$ as the centre]
					B1: y-axis is a tangent to circle at O
					B1 : intersection points of O and (4,0) clearly shown
					B1 : line $x=3$ clearly shown inside the circle
	(c)	$\sqrt{2^{2}-1^{2}}=\sqrt{3}$	$(3, \sqrt{3})$	3	P1 : sight of $\sqrt{2^{2}-1^{2}}=\sqrt{3}$
		so coordinates are	$(3,-\sqrt{3})$		A1 : $(3, \sqrt{3})$
					A1: $(3,-\sqrt{3})$
					[Alternative: algebraic solution: Equation of circle is $(x-2)^{2}+y^{2}=4$. When $x=3, y^{2}=3$ (P1), so $y= \pm \operatorname{sqrt}(3)$ Then correct coordinates for A1 A1.]

