

GCSE Paper 1H (Edexcel Version)

Set B

CM G	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)							
Ques	tion	Working	Answer	Mark	Notes			
1		$F = 32 \times 0.12 = 3.84$	3.84	3	P1: attempt at a suitable conversion, i.e: $1200 \text{ cm}^2 = 1200 \times 10^{-4} \text{ m}^2 \text{ OR} 32 \text{ N/m}^2 = (32 \times 10^{-4}) \text{ N/cm}^2$			
					M1 : uses the formula with consistent units ft their conversion			
					A1 : cao = 3.84			
2		3x + 2y = 7 $x - 2y = -3$	x = 1, $y = 2$	3	M1 : method to reduce system to one equation, i.e. elimination or substitution. Use of subtraction instead of addition (oe) is M0			
		$\Rightarrow 4x = 4$			M1 : finds one variable and uses it to find the other variable			
		$\Rightarrow x = 1$			A1: $x = 1, y = 2$			
		so $y = \frac{1+3}{2} = 2$			[NB: 2 nd M1 is not dependent on 1 st M1]			
3	(a)	$\frac{1}{6} - \frac{2}{3} = -\frac{3}{6} = -\frac{1}{2}$	$-\frac{1}{2}$		M1 : correct method to add fractions either in terms of <i>x</i> or with 3 substituted			
					A1 : cao			

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
3	(b)	$\frac{5}{3} \times \frac{1}{3} = \frac{5}{9}$	<u>5</u> 9	2	M1 : correct method to divide fractions either in terms of <i>x</i> or with 3 substituted			
					A1 : cao			
4		R, B, Y = 2:1:4 So 40 red, 20 blue, 80 yellow counters $\frac{5}{8} \times 40 = 25$, so 15 red counters left 9 blue counters left 48 yellow counters left Ratio is 15:9:48 = 5:3:16	5:3:16	5	P1: identifies ratio of R, B, Y as 2: 1: 4. Can be implied, e.g. by $2x+x+4x\{=140\}$ or correct workings A1: 40 red, 20 blue, 80 yellow counters in the bag initially. Can be implied P1: attempts to find number of red or yellow counters left in the bag (not blue!) A1: two of 15 red counters left, 9 blue counters left, 48 yellow counters left A1: correct simplified ratio 5: 3: 16			

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)						
Que	estion	Working	Answer	Mark	Notes		
5		$x + 40 = 2x + 14 \Rightarrow x = 26$ $66 + 66 + y + 3(26) + y = 360$ $2y = 360 - 210 = 150$ $\Rightarrow y = 75$	75	4	P1: $x + 40 = 2x + 14$ A1: $x = 26$ (can be implied) dP1: sum of all angles = 360 ft their x A1: correct value of y		
6	(a)		1	1	B0 : cao		
	(b)	$n^{2} + 12 - 4n = 17$ $n^{2} - 4n - 5 = 0$ $(n - 5)(n + 1) = 0$ $n = -1, n = 5$	n = -1, $n = 5$	4	M1: expands the brackets correctly A1ft: $n^2 - 4n - 5 = 0$ (forms 3TQ = 0 ft their expansion) M1: method to solve the quadratic, i.e. factorising (condone sign errors), quadratic formula (correct substitution but condone sign errors) or completing the square (M1 for e.g. $(n-2)^2 - 4$) A1: correct solutions		

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)						
Qu	estion	Working	Answer	Mark	Notes		
7		$10 \times 9 \times 8 \times 7 = 5040$	1 5040	3	P1 : for $10 \times 9 \times 8 \times 7$		
		so probability is	3040		A1:5040		
		so probability is $\frac{1}{5040}$			A1ft: probability is 1/'their total number of combinations'		
					Special cases: SC1 : use of $9 \times 8 \times 7 \times 6$ leading to $1/3024$ is SCP1 A0 A1ft SC2 : use of $9 \times 9 \times 8 \times 7$ leading to $1/4536$ is P0 A0 A1ft		
8	(a)		explanatio n	1	C1: e.g. change in y is not 155 / needs to subtract 20 from 155		
	(b)		-3	1	B1 : cao		
9	(a)		continuous	1	B1: 'continuous' circled clearly. B0 if there is any ambiguity in their choice		
	(b)	Lowest value = 4.6, LQ = 5.55,	box-plot	3	B1 : whiskers correctly plotted (ignore size of the whiskers)		
		median = 7.0, UQ = 8.55, Highest value = 9.4			B1 : any two of LQ, median, UQ plotted correctly (ignore size)		
					B1 : fully correct box plot		

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
10	(a)	$2^{32} \times 5^{25} = 2^7 \times (2 \times 5)^{25}$	1.28×10^{27}	2	M1: for grouping the (2 x 5). Can be implied by e.g. 10^{25}			
		$= 128 \times 10^{25}$ $= 1.28 \times 10^{27}$			A1 : cao			
	(b)	$a = \frac{54.6 \times 10^9}{3 \times 10^8} = 182 \text{ s}$	1.158×10 ³	4	P1 : uses time = distance/speed to find either a or b . Must see $\times 10^6$ for the 'million' in the distance, but condone if unit consistency not accounted for			
		$b = \frac{402 \times 10^9}{3 \times 10^8} = 1340 \text{ s}$			A1 : correct value of a or b.			
		so $b - a = 1158 = 1.158 \times 10^3$ s			A1 : correct values of a and b. Values must be identified as a or b.			
					A1ft: correct value in standard form of $b - a$ ft their a and b . [NB: Values must be identified as a or b or clearly implied, i.e. through their value of $b - a$]			

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
11	(a)	$gf(x) = g(4 - x^2)$	$11-2x^2$	2	M1 : for sight of *			
		$= 2(4 - x^2) + 3 *$ $= 11 - 2x^2$			A1: $11 - 2x^2$			
	(b)	gf(2) = 11 - 8 = 3	<u>1</u>	3	M1 : substitutes 2 into their (a)			
		so	8		dM1 : attempts to evaluate h at their 3			
		$hgf(2) = h(3) = \frac{1}{3(3) - 1} = \frac{1}{8}$			A1 : cao			
					Alternative:			
					$hgf(x) = h(11-2x^2)$			

 $=\frac{1}{3(11-2x^2)-1} \qquad (M1)$

so $hgf(2) = \frac{1}{3(11-2(3)^2)-1} = \frac{1}{8}$ (dM1) (A1) dM1 for substitution

CM	GCSE I	Practice Papers / Set B / Paper 1H (V	1 FINAL)		
Que	estion	Working	Answer	Mark	Notes
12		$\sqrt{175} = \sqrt{25 \times 7} = \sqrt{25}\sqrt{7} = 5\sqrt{7}$	$2\sqrt{7}$	4	M1 : attempts to simplify $\sqrt{175}$ or $\sqrt{63}$
		$\sqrt{63} = \sqrt{9 \times 7} = \sqrt{9}\sqrt{7} = 3\sqrt{7}$ $\sqrt{175} - \sqrt{63} = 5\sqrt{7} - 3\sqrt{7} = 2\sqrt{7}$			A1: for $\sqrt{175} = 5\sqrt{7}$
		$\sqrt{1/5} - \sqrt{63} = 5\sqrt{1 - 3\sqrt{1}} = 2\sqrt{1}$			A1 : for $\sqrt{63} = 3\sqrt{7}$
					A1 : cao
13	(a)		answer	1	B1 : answer in the range $-1.825 \le c \le -1.75$.
	(b)		answer	1	B1 : answer of (x, y) , with $1.20 \le x \le 1.25$ and $-2.6875 \le y \le -2.625$
	(c)		answer	1	B1: two roots in the ranges $3.25 \le x_1 \le 3.35$ and $-1 \le x_2 \le -0.825$
	(d)		answer	1	B1 : answer of $(1/3x, y)$ ft their (b). Division only needs to be correct to 1dp

CM C	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)						
Ques	stion	Working	Answer	Mark	Notes		
14		$P(*,R) = P(R,R) + P(B,R)$ $= \left(\frac{7}{11} \times \frac{6}{8}\right) + \left(\frac{4}{11} \times \frac{5}{8}\right)$	<u>62</u> 88	4	P1: for $\frac{7}{11}$, $\frac{6}{8}$, $\frac{4}{11}$ or $\frac{5}{8}$ oe seen on diagram or in a calculation		
		$= \frac{42}{88} + \frac{20}{88}$			P1: for $\frac{7}{11} \times \frac{6}{8}$ or $\frac{4}{11} \times \frac{5}{8}$ oe		
		$=\frac{62}{88}$			P1: for $\left(\frac{7}{11} \times \frac{6}{8}\right) + \left(\frac{4}{11} \times \frac{5}{8}\right)$ or $\frac{42}{88} + \frac{20}{88}$ oe		
					A1 : oe		
15			$3n^2 + 5n + 2$	3	M1 : correct method to start to find n th term, e.g. constant second differences or sight of $an^2 + bn + c$ (with attempt to form simultaneous eqs)		
					M1 : for a method leading to $3n^2$ and either $5n$ or 2		
					A1: $3n^2 + 5n + 2$		

CM GC	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)								
Questio	on Working	Answer	Mark	Notes					
16	$x = (n-1)^{2}[n-(n-1)]$ = $(n-1)^{2}(n-n+1)$	proof	3	M1: extracts a factor of $(n-1)^2$ OR correct method to expand and simplify all the brackets, resulting in correct number of terms					
	$=(n-1)^2$			A1 : convincingly shows $x = (n-1)^2$					
	(since $x = (n-1)^2$ and n is a positive integer), therefore x is a square number			C1 : conclusion, 'therefore <i>x</i> is a square number' oe					

CM GCSE	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)								
Question	Working	Answer	Mark	Notes					
17	$m_{AB} = \frac{10-7}{-3-4} = -\frac{3}{7}$	proof	6	P1 : method to find the gradient of AB					
	y-intercept of AB is thus			P1 : attempts to find y intercept of AB					
	$7 = -\frac{3}{7}(4) + c \Rightarrow c = \frac{61}{7}$			B1ft : correct perp. gradient to AB ft their $-3/7$					
	line perp to AB has gradient $\frac{7}{3}$ so y coordinate of Q given by $6 = \frac{7}{3}(2) + c \Rightarrow c = 6 - \frac{14}{3} = \frac{4}{3}$ so $PQ = \frac{61}{7} - \frac{4}{3} = \frac{183}{21} - \frac{28}{21} = \frac{155}{21}$			dP1 : attempts to find y coordinate of Q					
				A1 : correct y coordinates for P and Q					
				A1 : complete an convincing proof, showing clearly how PQ is obtained and the final given result					
	so $OP: PQ = \frac{61}{7}: \frac{155}{21} = 183:155$ *								

CM	CM GCSE Practice Papers / Set B / Paper 1H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
18		$\frac{360}{8} = 45^{\circ}$ area of triangle = $\frac{1}{2} \times r \times r \times \sin 45 = \frac{1}{2}r^{2} \times \frac{\sqrt{2}}{2}$ $= \frac{1}{4}r^{2}\sqrt{2}$ so area of octagon is $8 \times \frac{1}{4}r^{2}\sqrt{2} = 2r^{2}\sqrt{2}$	proof	4	B1 : $\sin 45 = \frac{\sqrt{2}}{2}$ oe (e.g. $\frac{1}{\sqrt{2}}$) P1 : attempts to find area of relevant triangle P1 : area of octagon is 8 * area of relevant triangle A1 : complete and convincing proof [May be alternative methods, which should be sent to review.]			

Question		Working	Answer	Mark	Notes
19	(a)		2	1	B1 : cao
	(b)		sketch	4	B1 : circle centred at (2,0). [Does not need to be labelled, but centre needs to be roughly shown to have (2,0) as the centre]
					B1 : y-axis is a tangent to circle at O
					B1: intersection points of O and (4,0) clearly shown
					B1 : line $x = 3$ clearly shown inside the circle
	(c)	$\sqrt{2^2 - 1^2} = \sqrt{3}$	$(3,\sqrt{3})$	3	P1: sight of $\sqrt{2^2 - 1^2} = \sqrt{3}$
		so coordinates are $(3, \sqrt{3})$ $(3, \sqrt{3})$	(3,-43)		A1: $(3,\sqrt{3})$
		$(3,\sqrt{3})$ and $(3,-\sqrt{3})$			A1: $(3, -\sqrt{3})$
					[Alternative: algebraic solution: Equation of circle is $(x-2)^2 + y^2 = 4$. When $x = 3$, $y^2 = 3$ (P1), so $y = \pm$ sqrt(3) Then correct coordinates for A1 A1.]