GCSE: Algebraic proof

This worksheet is designed to give you extra practice on algebraic proof.

1 Write down algebraic expressions for
(a) an even number
(b) an odd number
(c) a multiple of four
(d) a positive number which leaves a remainder of 1 upon division by 5
(e) the sum of two consecutive even numbers
(f) the sum of two even numbers
(g) the product of two odd numbers
(e) the cube of a multiple of 6
(h) the sum of the squares of two consecutive multiples of 3

2 Prove algebraically that
(a) the sum of two consecutive numbers is odd
(b) the product of two even numbers is even
(c) the sum of any three consecutive numbers is a multiple of 3

3 (a) Prove algebraically that the sum of the squares of two consecutive odd numbers is not a multiple of 4 .
(b) What is the remainder when the sum of the squares of two consecutive odd numbers is divided by 4 ? Is the number odd or even?

4 Johnny has an even number. He adds 3 to this number and then squares it.
The result is 81 .
What even number did Johnny start with?
5 Prove algebraically that $(5 n+1)^{2}-(5 n-1)^{2}$ is both a multiple of 4 and a multiple of 5 for positive integers n.

6 Anne has a number which is not a multiple of 3 .
(a) Explain why it must be of the form $(3 n+1)$ or $(3 n+2)$, where n is an integer.
(b) Hence, by considering these two different cases, show that the square of Anne's number leaves a remainder of 1 when divided by 3 .

7 (a) Prove that if n is an even integer, then $3 n^{2}+n+14$ is even.
(b) Prove that if n is an odd integer, then $3 n^{2}+n+14$ is even.
(c) What can you deduce about the number $3 n^{2}+n+14$ for all integers n ?

