GCSE: Iterations

This worksheet is designed to give you extra practice on using and applying iterative relations.

1 The sequence a_{n} is defined such that $a_{n+1}=a_{n}+3$ and $a_{0}=4$.
(a) Find the values of a_{1}, a_{2} and a_{3}.
(b) What type of sequence is a_{n} ?

2 The sequence u_{n} is defined such that $u_{n+1}=2 u_{n}-3$ and $u_{1}=-2$.
(a) Find the values of u_{2}, u_{3} and u_{4}.
(b) Find the value of u_{0}.

3 Given that $x_{n+1}=3-\frac{x_{n}}{4}$ and $x_{1}=1$, find the values of
(a) x_{2}, x_{3} and x_{4},
(b) x_{0}.

Where appropriate, give each value to three decimal places.
4 Given that $x_{n+1}=x_{n}{ }^{2}-\frac{7}{8}$ and $x_{0}=0$,
(a) write down the smallest term in the sequence.
(b) Find the values of x_{1}, x_{2} and x_{3}, giving each value to four significant figures.

5 A deadly disease infects a population of plants.
The number of plants infected with the disease n days after the first infection, p_{n}, is given by

$$
p_{n+1}=4 p_{n}+6
$$

and $p_{0}=3$.
(a) Interpret the meaning of p_{0} in this context.
(b) Find the number of plants infected with the disease 2 days after the first infection.

There are 20000 plants in the population.
(c) Show that all the plants in the population will be infected with the disease after 6 days.

6 Markov invests $£ P$ into a bank account.
He is paid $r \%$ per annum compound interest and takes out $£ D$ a year from this account. The amount of money in the account after n years is A_{n}.
(a) Show that

$$
A_{n+1}=A_{n}\left(1+\frac{r}{100}\right)-D
$$

Markov invests $£ 1000$ into the account and the interest rate is 2%.
After 3 years, Markov has $£ 143$ in the savings account.
(b) How much money does Markov take out of the account each year? Give your answer to the nearest pound.

7 Here is a table of values for the curve with equation $y=\mathrm{f}(x)$.

x	-3	-2	-1	0	1
$\mathrm{f}(x)$	-10	-3	2	15	82

The equation $\mathrm{f}(x)=0$ has at least one solution in the interval $x=a$ and $x=b$.
Using the table, write down the value of a and b. Explain your reasoning.
8 Show that the equation $x^{3}-2 x^{2}-7 x+1=0$ has a solution between $x=3$ and $x=4$.
9 Show that the equation $5 x^{3}+x^{2}-8 x+4=0$ has a solution between $x=-2$ and $x=-1$.
10 (a) Show that the equation $-3 x^{3}+2 x^{2}+4 x+5=0$ has a solution α between $x=1.5$ and $x=2$.
(b) Show that the equation $-3 x^{3}+4 x+5=0$ can be re-arranged to give $x=\left(\frac{4 x+5}{3}\right)^{\frac{1}{3}}$.
(c) Starting with $x_{0}=1.5$, use the iterative formula

$$
x_{n+1}=\left(\frac{4 x_{n}+5}{3}\right)^{\frac{1}{3}}
$$

three times to find an estimate for α.
Give your answer to three decimal places.
(d) The actual value of $\alpha=1.5516$ to four decimal places.
(i) Find the percentage error in your estimate in (c).
(ii) Explain how you could make your approximation in (c) more accurate.

END OF TEST

