

GCSE (9-1) Paper 3H (Calculator)

Practice set A

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)								
Qu	estion	Working	Answer Mar		Notes				
1			diagram	2	C1: draws a solid shape that matches the front elevation				
					C1: fully correct solid shape with all the correct dimensions for the overall length, width and height. Note: accept dimensions that are break the rectangular prism and the				
					triangular prism but these are not necessary				
2	(a)		0.5024192 862	1	B1 : cao				
	(b/i)		0.50242	1	B1 FT : correct rounding ft their (a)				
	(b/ii)		0.5	1	B1 FT : correct rounding ft their (a)				
3		x + 2(-9) = 10x x - 18 = 10x	x = -2	3	M1 : substitutes $y = -9$ into the equation (no need for any evaluation)				
		9x = -18			M1: for $\pm 9x = \pm 18$				
		x = -2			A1: obtains $x = -2$				

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
4		e.g.	No + reason	3	P1: attempts to convert all relevant prices into a common currency A1: one correct and relevant conversion A1: correctly calculates total amount of money Jessie has in a single currency and gives a statement, i.e. 'no, Jessie does not have enough money to buy the dress)', 'no, not enough money', etc. NB: Relevant conversions are: €30 = £26.70, €30 = \$36.14, \$10 = £7.39, \$10 = €8.30, £35 = €39.33, £35 = \$47.38			
5	(a)		<u>1</u> 6	1	B1 : cao			
	(b)	Area of sector = $\pi \times 4^2 = 50.265$ So volume of prism = $^{1}50.265$ $^{1}\times 10 = 500.265$	500 cm ³	3	M1 : area of the sector = 16π M1 : volume = $10 \times$ 'their area of sector' A1 : correct volume			

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)								
Qu	estion	Working	Answer	Mark	Notes				
6		90 - 45 = 45, 90 - 30 = 60 $x = 180 - 45 - 60 = 75$	x = 75 + reason	4	P1: attempts to find a relevant angle P1: forms and attempts to solve an equation involving x, i.e. x + 60 + 45 = 180 A1: correct value of x C1: gives at least one correct angle law to support their working somewhere in their working, i.e. 'angles in a triangle add to 180', 'the two non-right angles in a right angled triangle add to 90', 'angles on a straight line add to 180', etc. Look for and credit working on the diagram				
7		1 unit of commission is $\frac{700}{7} = £100$ \Rightarrow Abdul receives £400 in commission So Shivani receives £200 in commission \therefore total commission = $700 + 400 + 200 + 300 = £1600$	£1600	4	P1: for \frac{700}{7} A1: Abdul receives £400 in commission M1: adds together their values for the commissions received by all the individuals OR does 100*(7+4+ their '2'+3) A1: £1600 with supported workings				

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)									
Qu	estion		Working		Answer	Mark	Notes			
8	(a)			О	1	B1: correct box unambiguously ticked. Ignore any ambiguous ticks and markings				
	(b)						O, B	1	B1: correct boxes unambiguously ticked. Ignore any ambiguous ticks and markings	
9	(a)				table 2	B1 : correct values added in xf column				
		X	f	xf	x^2f				B1 : correct values added in $x^2 f$ column	
		(2)	(4)	(8)	(16)					
		(7)	(12)	84	686					
		(11)	(6)	66	726					
		(14)	(8)	112	1568					
	(b)	4+12+6+8=30			9	3	B1 : total frequency = 30, seen or implied			
		8+84-	+ 66 + 1 30	$\frac{12}{1} = 9$					M1 : correct expression for the mean	
			50						A1 : correct mean = 9	

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL) Working Question Mark Notes Answer 16 + 686 + 726 + 1568 = 99.86...M1 : finds total value for $x^2 f$ 3 (c) {awrt} 100 30 M1 : computes A1: awrt 100, completely correct workings B1: correct variance. (d/i){awrt} 18.68 cm^2 (d/ii) B1: correct units 10 (a) 12 B1: cao 0 B1: cao (b) 1 89 (c) B1: cao 89 B1 ft : correct answer or ft their (c) (d)

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
11		$A^2 = \frac{k}{\sqrt[3]{B}}$	27 64	4	M1 : forms correct expression for A in terms of B and substitutes (2, 27) into the expression			
		$2^2 = \frac{k}{\sqrt[3]{27}} \Rightarrow k = 4 \times 3 = 12$			A1 : correct value of k			
		$\therefore 4^2 = \frac{12}{\sqrt[3]{B}} \Rightarrow \sqrt[3]{B} = \frac{3}{4} \Rightarrow B = \frac{27}{64}$			dM1 : substitutes their k into their expression along with $A = 4$ and attempts to find B			
					A1 : correct value of B			
12	(a)		geometric	1	B1 : cao			
	(b)		0 < r < 1	1	B1 : unambiguous tick in the correct box. Ignore ambiguous ticks and markings			
	(c)	$2000 = 5400r^4$ $\Rightarrow r = \sqrt[4]{\frac{2000}{5400}} = 0.7801$ So after 5 years, his car is worth $5400(0.7801)^5 = £1560.23$ So, yes, Edgar has made profit from selling his car (as £1560 > £1500)	Yes + reason	5	P1 : forms the equation $2000 = 5400r^4$			
					A1 : correct value of <i>r</i>			
					P1 : substitutes 5 into the formula for P with their r			
					A1 : price of the car after 5 years is {awrt} £1560			
					C1 : fully correct solution and gives a conclusive statement, i.e. 'yes, Edgar has made profit by selling his car'			

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
13		$f(x+1) - f(x) = \frac{x+1}{2(x+1)+1} - \frac{x}{2x+1}$	$\frac{1}{(2x+1)(2x+3)}$	5	M1 : correct expression for $f(x+1)$ seen anywhere			
		$=\frac{(x+1)(2x+1)-x(2x+3)}{(2x+3)(2x+1)}$			M1: writes down $f(x+1)-f(x)$ using their $f(x+1)$ and attempts to combine the fractions using a common denominator			
	$= \frac{2x^2 + 3x + 1 - 2x^2 - 3x}{(2x+3)(2x+1)}$ $= \frac{1}{(2x+3)(2x+1)}$			A1 : forms a correct expression for $f(x+1)-f(x)$ as a single unsimplified fraction				
		(2x+3)(2x+1)			M1: expands the brackets on the numerator and collects like terms			
			A1: correct expression obtained from completely correct workings. Condone brackets on denominator expanded (correctly). Ignore any subsequent working once the correct form given in the question has been reached					

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
14	(a)		c^2	1	B1 : cao			
	(b)	Outer square has area = $(a+b)^2$	proof	4	M1 : area of the outer square = $(a + b)^2$. May be implied			
	\$ 2.2 (Area of $T = \frac{1}{2}ab$ Area of the 4 triangles is thus $2ab$ So area of shaded region/square			M1 : area of the triangles is 2ab. May be implied			
					M1 : considers their 'area of outer square – their area of the 4 triangles'. Must be an algebraic expression in terms of <i>a</i> and <i>b</i>			
		$ABCD = (a+b)^{2} - 2ab = a^{2} + 2ab + b^{2} - 2ab$ $= a^{2} + b^{2}$			A1: complete and convincing proof with no errors seen			
	(c)		expln.	1	C1: any correct explanation about what has been shown, i.e. 'Pythagoras' Theorem (has been proven)', ' $a^2 + b^2 = c^2$ ', 'sum of the squares of the shorter sides of a right-angled triangle is the square of the longer side', etc.			

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
15		Method 1: $\frac{10}{n} \times \frac{9}{n-1} = p$ $\Rightarrow 90 = pn(n-1)$ $\Rightarrow pn^2 - pn - 90 = 0$ $\Rightarrow n^2 - n - \frac{90}{p} = 0$ So $\frac{90}{p} = 210 \Rightarrow p = \frac{3}{7}$ Method 2: $n^2 - n - 210 = 0$ $\Rightarrow (n-15)(n+14) = 0$ $\Rightarrow n = 15$ $p = \frac{10}{15} \times \frac{9}{14} = \frac{3}{7}$	$p = \frac{3}{7}$	3	P1 : for $\frac{10}{n} \times \frac{9}{n-1} = p$ (oe) OR attempts to solve the quadratic equation, obtaining $n = 15$ (ignore other solutions if given) M1 : compares coefficients OR for $p = \frac{10}{'15'} \times \frac{9}{'15'-1}$ using their $n = 15$ (correct value of $p = 15$).			

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
16	(a/i)		(3,30)	1	B1 : cao			
	(a/ii)		(7,10)	1	B1 : cao			
	(a/iii)		$\left(\frac{1}{2},10\right)$	1	B1 : cao			
	(b)		False False True	3	B1, B1, B1: one mark for each correct. Answers should be clear and unambiguous. Ignore any unambiguous markings or ticks			
17	(a)	$\Rightarrow 2(25)(35)\cos p = 25^2 + 35^2 - 19^2$ $\Rightarrow \cos p = \frac{25^2 + 35^2 - 19^2}{2(25)(35)} = 0.85085$	p = 32 (awrt)	4	M1 : uses the cosine rule with all values substituted in correctly			
			(awit)		A1 : $\cos p = 0.85085$ or equivalent, including unsimplified forms			
					dM1 : uses inverse cosine on their $\cos p$ to find p			
		$\Rightarrow p = \cos^{-1}(0.85085) = 31.695$			A1 : correct value of p. Awrt 32			

CM	CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)								
Que	estion	Working	Answer	Mark	Notes				
	(b)	Area = $\frac{1}{2}$ (25)(35)sin(31.695)	230 (awrt)	2	M1: $\frac{1}{2}$ (25)(35)sin(their p)				
		$= 229.861 \text{ cm}^2$			A1 : correct area of the triangle				
18		Height of cone = 4 cm	$\frac{22}{3}\pi$	5	B1: correct height of the cone, seen or implied				
		So volume of cone = $\frac{1}{3}\pi(3)^2(4) = 12\pi$	3 "		B1ft: correct volume of the cone, ft their height. If they use 5 as the height, it is B0 B0				
		⇒ volume of cylinder =			M1 : correctly uses the ratio on their volume for the cone to find the volume of the cylinder				
		$= \frac{3}{2} \times 12\pi = 18\pi$			M1 : correct volume for the sphere				
		2			A1 : correct exact volume of the shaded region. Isw				
		Volume of sphere = $\frac{4}{3}\pi(2)^3 = \frac{32}{3}\pi$							
		So volume of shaded region is $18\pi - \frac{32}{3}\pi = \frac{22}{3}\pi$							