GCSE (9-1)
Paper 3H (Calculator)

Practice set A

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working	Answer	Mark	Notes
1			diagram	2	C1 : draws a solid shape that matches the front elevation
					C1 : fully correct solid shape with all the correct dimensions for the overall length, width and height. Note: accept dimensions that are break the rectangular prism and the triangular prism but these are not necessary
2	(a)		$\begin{gathered} 0.5024192 \\ 862 \end{gathered}$	1	B1: cao
	(b/i)		0.50242	1	B1 FT : correct rounding ft their (a)
	(b/ii)		0.5	1	B1 FT : correct rounding ft their (a)
3		$\begin{aligned} & x+2(-9)=10 x \\ & x-18=10 x \end{aligned}$	$x=-2$	3	M1 : substitutes $y=-9$ into the equation (no need for any evaluation)
		$9 x=-18$			M1: for $\pm 9 x= \pm 18$
					A1: obtains $x=-2$

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

	Working	Answer	Mark	Notes
6	$\begin{aligned} & 90-45=45,90-30=60 \\ & x=180-45-60=75 \end{aligned}$	$\begin{gathered} x=75+ \\ \text { reason } \end{gathered}$	4	P1 : attempts to find a relevant angle
				P1 : forms and attempts to solve an equation involving x, i.e. $x+60$ $+45=180$
				A1: correct value of x
				C 1 : gives at least one correct angle law to support their working somewhere in their working, i.e. 'angles in a triangle add to 180', 'the two non-right angles in a right angled triangle add to 90 ', 'angles on a straight line add to 180 ', etc.
				Look for and credit working on the diagram
7	1 unit of commission is $\frac{700}{7}=£ 100$	$£ 1600$	4	$\text { P1 : for } \frac{700}{7}$
	\Rightarrow Abdul receives $£ 400$ in commission			A1: Abdul receives $£ 400$ in commission
	So Shivani receives $£ 200$ in commission			M1 : adds together their values for the commissions received by all the individuals OR does 100 * $(7+4+$ their ' 2 ' +3)
	$\begin{aligned} & \therefore \text { total commission }=700+400+ \\ & 200+300=£ 1600 \end{aligned}$			A1: $£ 1600$ with supported workings

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working				Answer	Mark	Notes	
8	(a)					O	1	B1 : correct box unambiguously ticked. Ignore any ambiguous ticks and markings	
	(b)					O, B	1	B1 : correct boxes unambiguously ticked. Ignore any ambiguous ticks and markings	
9	(a)	x f $x f$ $x^{2} f$ (2) (4) (8) (16)				table	2	B1: correct values added in $x f$ column	
						B1 : correct values added in $x^{2} f$ column			
		(7)	(12)	84	686				
		(11)	(6)	66	726				
		(14)	(8)	112	1568				
	(b)	$\begin{aligned} & 4+12+6+8=30 \\ & \frac{8+84+66+112}{30}=9 \end{aligned}$					9	3	B1 : total frequency $=30$, seen or implied
						M1 : correct expression for the mean			
						A1 $:$ correct mean $=9$			

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working	Answer	Mark	Notes
11		$\begin{aligned} & A^{2}=\frac{k}{\sqrt[3]{B}} \\ & 2^{2}=\frac{k}{\sqrt[3]{27}} \Rightarrow k=4 \times 3=12 \\ & \therefore 4^{2}=\frac{12}{\sqrt[3]{B}} \Rightarrow \sqrt[3]{B}=\frac{3}{4} \Rightarrow B=\frac{27}{64} \end{aligned}$	$\frac{27}{64}$	4	M1 : forms correct expression for A in terms of B and substitutes (2, 27) into the expression
					A1: correct value of k
					dM1 : substitutes their k into their expression along with $A=4$ and attempts to find B
					A1 : correct value of B
12	(a)		geometric	1	B1 : cao
	(b)		$0<r<1$	1	B1 : unambiguous tick in the correct box. Ignore ambiguous ticks and markings
	(c)	$\begin{aligned} & 2000=5400 r^{4} \\ & \Rightarrow r=\sqrt[4]{\frac{2000}{5400}}=0.7801 \ldots \end{aligned}$ So after 5 years, his car is worth $5400(0.7801 \ldots)^{5}=£ 1560.23$ So, yes, Edgar has made profit from selling his car (as $£ 1560>£ 1500)$	Yes +reason	5	P1 : forms the equation $2000=5400 r^{4}$
					A1 : correct value of r
					P1 : substitutes 5 into the formula for P with their r
					A1 : price of the car after 5 years is \{awrt\} $£ 1560$
					C 1 : fully correct solution and gives a conclusive statement, i.e. 'yes, Edgar has made profit by selling his car'

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working	Answer	Mark	Notes
14	(a)		c^{2}	1	B1: cao
	(b)	Outer square has area $=(a+b)^{2}$ Area of $T=\frac{1}{2} a b$ Area of the 4 triangles is thus $2 a b$ So area of shaded region/square $A B C D=$ $\begin{aligned} (a+b)^{2}-2 a b & =a^{2}+2 a b+b^{2}-2 a b \\ & =a^{2}+b^{2} \end{aligned}$	proof	4	M1 : area of the outer square $=(a+b)^{2}$. May be implied
					M1 : area of the triangles is $2 a b$. May be implied
					M1 : considers their 'area of outer square - their area of the $\mathbf{4}$ triangles'. Must be an algebraic expression in terms of a and b
					A1 : complete and convincing proof with no errors seen
	(c)		expln.	1	C 1 : any correct explanation about what has been shown, i.e. 'Pythagoras' Theorem (has been proven)', ' $a^{2}+b^{2}=c^{2}$, 'sum of the squares of the shorter sides of a right-angled triangle is the square of the longer side', etc.

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working	Answer	Mark	Notes
16	(a/i)		$(3,30)$	1	B1 : cao
	(a/ii)		$(7,10)$	1	B1 : cao
	(a/iii)		$\left(\frac{1}{2}, 10\right)$	1	B1 : cao
	(b)		False False True	3	B1, B1, B1 : one mark for each correct. Answers should be clear and unambiguous. Ignore any unambiguous markings or ticks
17	(a)	$\begin{aligned} & 19^{2}=25^{2}+35^{2}-2(25)(35) \cos p \\ & \Rightarrow 2(25)(35) \cos p=25^{2}+35^{2}-19^{2} \\ & \Rightarrow \cos p=\frac{25^{2}+35^{2}-19^{2}}{2(25)(35)}=0.85085 \ldots \\ & \Rightarrow p=\cos ^{-1}(0.85085 \ldots)=31.695 \ldots \end{aligned}$	$\begin{gathered} p=32 \\ \text { (awrt) } \end{gathered}$	4	M1 : uses the cosine rule with all values substituted in correctly
					A1 $: \cos p=0.85085 \ldots$ or equivalent, including unsimplified forms
					dM 1 : uses inverse cosine on their $\cos p$ to find p
					A1: correct value of p. Awrt 32

CM GCSE Practice Papers / Set A / Paper 3H (V1 FINAL)

Question		Working	Answer	Mark	Notes
	(b)	$\begin{aligned} & \text { Area }=\frac{1}{2}(25)(35) \sin (31.695 \ldots) \\ & =229.861 \ldots \mathrm{~cm}^{2} \end{aligned}$	230 (awrt)	2	M1 : $\frac{1}{2}(25)(35) \sin ($ their $p)$
					A1 : correct area of the triangle
18		Height of cone $=4 \mathrm{~cm}$ So volume of cone $=$ $\frac{1}{3} \pi(3)^{2}(4)=12 \pi$ \Rightarrow volume of cylinder $=$ $=\frac{3}{2} \times 12 \pi=18 \pi$ Volume of sphere $=\frac{4}{3} \pi(2)^{3}=\frac{32}{3} \pi$ So volume of shaded region is $18 \pi-\frac{32}{3} \pi=\frac{22}{3} \pi$	$\frac{22}{3} \pi$	5	B1 : correct height of the cone, seen or implied
					B1 ft: correct volume of the cone, ft their height. If they use 5 as the height, it is B 0 B 0
					M1 : correctly uses the ratio on their volume for the cone to find the volume of the cylinder
					M1 : correct volume for the sphere
					A1 : correct exact volume of the shaded region. Isw

