GCSE (9-1)
Paper 2H (Calculator)

Practice set A

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
9	(a/i)		interval	1	B1 : correct error interval: $2.05 \leq x<2.15$
	(a/ii)		interval	1	B1 : correct error interval: $4.67 \leq y<4.68$
	(a/iii)		interval	1	B1 : correct error interval: $2.52<y-x<2.63$
	(b)	Upper bound of S :	$\mathrm{UB}=$	4	M1 : use of $x=2.15$ and $y=4.67$ in a formula
		$\frac{3(2.15)-2}{4.67}=0.9528 \ldots$	0.95		A1 : correct upper bound, awrt 0.95
		Lower bound of S :			M1 : use of $x=2.05$ and $y=4.68$ in a formula
		$\frac{3(2.05)-2}{4.68}=0.8867 \ldots$	$\begin{gathered} \text { \{awrt\}} \\ 0.89 \end{gathered}$		A1 : correct lower bound, awrt 0.89
10	(a)	Gradient of tangent at $t=4$ is$\frac{6.125-0.625}{4.6-3.4}=6.25 \mathrm{~m} / \mathrm{s}$	6.25	4	P1: considers tangent line at $t=4$ (can be implied) and links its gradient to the velocity at $t=4$
					P1 : finds two points that lie on the tangent line
					dP 1 : correct expression for gradient of tgt line ft their two points
					A1 : correct velocity at $t=4$. Accept answers in $5.90 \leq v \leq 6.60$

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
	(b)		Underestimate	2	B1 : under-estimate
					C 1 : reason, i.e. 'tangent line lies beneath the curve at $t=4$ ', 'tangent line not as steep as curve $t=4$ ', etc.
11	$\begin{aligned} & 0^{3}+2(0)^{2}+3(0)-4=-4\{<0\} \\ & 1^{3}+2(1)^{2}+3(1)-4=2\{>0\} \end{aligned}$ since there has been a change of sign \{between $(0,1)$ and the curve $y=x^{3}+2 x^{2}+3 x-4$ is continuous on $(0,1)\}$, the equation $x^{3}+2 x^{2}+3 x-4=0$ has a solution in $(0,1)$	$\begin{aligned} & 0^{3}+2(0)^{2}+3(0)-4=-4\{<0\} \\ & 1^{3}+2(1)^{2}+3(1)-4=2\{>0\} \end{aligned}$ since there has been a change of sign \{between $(0,1)$ and the curve $y=x^{3}+2 x^{2}+3 x-4$ is continuous on $(0,1)\}$, the equation $x^{3}+2 x^{2}+3 x-4=0$ has a solution in $(0,1)$	proof	3	M1 : substitutes 0 into $x^{3}+2 x^{2}+3 x-4$ and evaluates expression
					M1 : substitutes 1 into $x^{3}+2 x^{2}+3 x-4$ and evaluates expression
					A1 : fully correct workings and a conclusion that mentions that there is a solution because of a 'change of sign' - any other details in the conclusion are not required for the mark

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

	Working	Answer	Mark	Notes
12	$\begin{aligned} & a=4, b=-5, c=-1 \\ & x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(4)(-1)}}{2(4)} \\ & x=\frac{5 \pm \sqrt{41}}{8}, \text { so } x=1.43 \text { or }-0.18 \end{aligned}$	$\begin{gathered} 1.43,- \\ 0.18 \end{gathered}$	3	M1 : substitutes correctly into the quadratic formula with $a= \pm 4$, $b= \pm 5$ and $c= \pm 1$ OR extracts factor of 4 and completes the square (need to see halving coefficient of x and subtraction of unwanted term)
				A1: sight of $x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(4)(-1)}}{2(4)}$ or $\left(x-\frac{5}{8}\right)^{2}-\left(\frac{5}{8}\right)^{2}=\frac{1}{4}$ (or better)
				A1: correct values of x to two decimal places
13	From A to B, Area scale factor $=\times 2$ Length scale factor $=\times \sqrt{2}$ So volume scale factor $=\times(\sqrt{2})^{3}$ \therefore volume of $B=$ $1000 \times(\sqrt{2})^{3}=2828.42 \ldots$	$\begin{aligned} & 2800 \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	4	P1 : attempts to find length or volume scale factor
				A1 : correct volume scale factor
				A1: awrt 2800

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question							Working	Answer	Mark	Notes
14		E	5	B5 : all 5 graphs correctly identified (B1 for each correct						
			A		identification)					
			C							
			B							
			D							

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
15	(a)		diameter	1	B1 : correct term identified. Accept unambiguous identifications. Multiple ticks/circles score B0 unless their final response is made clear
	(b)	Area of entire circle is $25 \pi \mathrm{~cm}^{2}$	35	4	B1 : correct area of entire circle (25π) seen or implied. Condone omission of units
		Length of $A B=10 \cos 35$			P1 : method to work out area of $A B C$ or $B C D$
		So area of $A B C=$			A1: area of $A B C$ or $B C D$ correct
		$\begin{aligned} & \frac{-}{2}(10)(10 \cos 35) \sin 35=23.492 \ldots \\ & \mathrm{~cm}^{2} \end{aligned}$			A1 : correct final area, awrt $35\left(\mathrm{~cm}^{2}\right)$
		Similarly area of $B C D=20.225 \ldots$ cm^{2} So area of shaded region is $25 \pi-23.492 \ldots-20.225 \ldots=34.822 \ldots$			

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question	Working	Answer	Mark	Notes
(b)	Way 1 : $\begin{aligned} & c=\frac{2.85 \times 10^{8}}{\sqrt{1-\left(\frac{1.67}{5.35}\right)^{2}}} \approx 3.00 \times 10^{8} \\ & \therefore \text { at } 2.31 \times 10^{8}, \\ & m=\frac{1.67 \times 10^{-27}}{\sqrt{1-\left(\frac{2.31}{3}\right)^{2}}}=2.62 \times 10^{-27} \end{aligned}$ Way 2 : $\begin{aligned} & \frac{2.85}{\sqrt{1-\left(\frac{1.67 \times 10^{-27}}{5.35}\right)^{2}}}=\frac{2.31}{\sqrt{1-\left(\frac{1.67}{m}\right)^{2}}} \\ & \Rightarrow 1-\left(\frac{1.67 \times 10^{-27}}{m}\right)^{2}=0.5929 \ldots \\ & \Rightarrow m=\frac{1.67 \times 10^{-27}}{\sqrt{1-0.5929 \ldots}}=2.62 \times 10^{-27} \end{aligned}$	$\begin{gathered} \{\text { awrt }\} \\ 2.6 \times 10^{-27} \end{gathered}$	4	Way 1 : M1 : substitutes correct values into their formula for c
				A1 : correct value of c seen or implied
				dM1 : substitutes correct values into formula for m with their c
				A1 : awrt 2.6×10^{-27}
				Way 2: M1 : correct expression on LHS (no need to see RHS). Condone inclusion/omission of $\times 10^{8}$ on numerator and $\times 10^{-27}$ in denominator
				$\text { A1 : for } \frac{2.85}{\sqrt{1-\left(\frac{1.67 \times 10^{-27}}{5.35}\right)^{2}}}=\frac{2.31}{\sqrt{1-\left(\frac{1.67}{m}\right)^{2}}} \mathrm{oe}$
				dM1 : attempts to make m the subject
				A1 : awrt 2.6×10^{-27}

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
17	(a)		25	1	B1: cao
	(b)	y coordinate of P is 4 Gradient of $O P$ is $\frac{4}{3}$ So gradient of tangent is $-\frac{3}{4}$	$-\frac{3}{4}$	4	M1 : substitutes 3 into $x^{2}+y^{2}=k$ with a numerical value for k
					A1: y coordinate of P is 4
					$\mathrm{dM1}$: gradient of $O P$ as 'their 4 '/3
					A1 : correct gradient of tangent line l
	(c)	Equation of tangent of the form $y=-\frac{3}{4} x+c$ Since tangent passes through P, $c=4+\frac{3}{4}(3)=\frac{25}{4}$ \therefore equation of l is $y=-\frac{3}{4} x+\frac{25}{4}$	$y=-\frac{3}{4} x+\frac{25}{4}$	3	M1 : equation tangent of the form $y==^{\prime}-\frac{3}{4} x+c \mathrm{ft}$ their $-3 / 4$
					M1 : substitutes coordinates of P in and attempts to find ' c '
					A1 : correct equation of tangent line l oe

CM GCSE Practice Papers / Set A / Paper 2H (V1 FINAL)

Question		Working	Answer	Mark	Notes
18		$\sqrt{125}=\sqrt{25 \times 5}=\sqrt{25} \sqrt{5}=5 \sqrt{5}$	$-5+4 \sqrt{5}$	5	B1 : $\sqrt{125}=5 \sqrt{5}$
		$\frac{5(1-\sqrt{5})}{\sqrt{5}}=\sqrt{5}(1-\sqrt{5})=\sqrt{5}-5$			M1 : expands $5(1-\sqrt{5})$ or multiplies top and bottom of $\frac{5}{\sqrt{5}}(1-\sqrt{5})$ by $\sqrt{5}$
		$\begin{aligned} & \ldots \equiv 5 \sqrt{5}-2 \sqrt{5}-5+\sqrt{5} \\ & \equiv-5+4 \sqrt{5} \end{aligned}$			A1 : obtains $\frac{5(1-\sqrt{5})}{\sqrt{5}}=\sqrt{5}-5$, may be implied
					dM1 : puts all simplified terms from original expression together and collects like terms
					A1 : cao. Accept $-5+4 \sqrt{5}$ or values of a and b stated. A0 if candidates give final answer and values of a and b and they contradict

