

GCSE (9-1) Paper 1H (Non-calculator)

Practice set A (AQA Versions)

СМ	CM GCSE Practice Papers / Set A / Paper 1H (AQA FINAL VERSION)							
Question		Working	Answer	Mark	Notes			
1			0.342	1	B1 : cao			
2			20 π	1	B1 : cao			
3	(a)		Arithmetic	1	B1 : cao			
	(b)		10 – 4 <i>n</i>	1	B1 : cao			
4		$\frac{050}{12\sqrt{610}}$	50.83	3	M1 : sight of '50', '60' or '10' arising from a long division method			
		60			M1 : sight of 10/12			
		10			A1 : cao			
		0						
		U						

СМ	CM GCSE Practice Papers / Set A / Paper 1H (AQA FINAL VERSION)						
Qu	estion	Working	Answer	Mark	Notes		
5	(a)	8-5=3 $\sqrt{5^2-3^2}=4$	Shows result	3	P1 : formation a right-angled triangle with base 3, may be on diagram and can be implied		
		AE = 3 + 4 = 7 (cm) *			P1 : sight of $\sqrt{5^2 - 3^2}$		
	(b)			4	A1 : complete and convincing proof		
		e.g. area of triangle = $\frac{1}{2}(3)(4) = 6 \{ \text{cm}^2 \}$ area of rectangle = $8 \times 3 = 24 \{ \text{cm}^2 \}$ total area = $24 \pm 6 = 30 \text{ cm}^2$	gle = $\frac{1}{2}(3)(4) = 6 \{ cm^2 \}$ ngle = $8 \times 3 = 24 \{ cm^2 \}$ $24 + 6 = 30 cm^2$		M1 : partitions the compound shape into two simpler shapes, i.e. rectangle and triangle or trapezium and rectangle and <u>attempts</u> to calculate one relevant area		
					M1 : combines their two (or more) areas correctly		
		101a1 a1ca = 24 + 0 = 30 cm			A1, A1 : value of 30, correct units cm^2		
6	(a)	$2a^2 - 2ab + ab - b^2$	$2a^2 - ab - b^2$	2	M1 : expands the brackets and generates 4 terms, with at least two correct		
					A1 : cao		
	(b)		$2e^{2}f^{8}$	2	M1 : sight of '2' and either index of <i>e</i> or <i>f</i> correct		
					A1 : cao		
	(c)		(x+1)(x+1)	1	B1 : correct factorisation. Accept $(x+1)^2$		

СМ	CM GCSE Practice Papers / Set A / Paper 1H (<u>AQA FINAL VERSION</u>)						
Question Working Answe		Answer	Answer Mark	Notes			
	(d/i)		expln.	1	C1 : e.g. 'the whole negative numbers, zero and the whole positive numbers', ', -2 , -1 , 0, 1, 2,'. Condone e.g. 'the whole numbers, including whole negative numbers'.		
	(d/ii)		No + reason	1	 C1 : no + explains with (at least) one of the following: <i>idea that</i> 1 and x² + 2x + 1 are not the only factors uses a counter-example, i.e. when x = 1, x² + 2x + 1 = 4, which is not prime 		
7	(a)		1	1	B1 : cao		
	(b)		3	1	B1 : cao		
	(c)		No + reason	1	C1 : no + <i>idea that</i> the gradients are not the same. If candidates use illustration, they must make clear that they are referring to the gradients of the line. For example, 'no, since $1 \neq -1$ ' is not enough, as they must mention the word gradient.		
	(d)		1	1	B1FT: if answer to (c) is no, then they should give 1. If answer to (c) is yes, then they should give 0.		

СМ	CM GCSE Practice Papers / Set A / Paper 1H (<u>AQA FINAL VERSION</u>)							
Question		Working	Answer	Mark	Notes			
8	(a)		Yes + reason	1	 C1 : yes + explains with (at least) one of the following: probability of <i>B</i> and <i>C</i> occurring is 0 the events/circles <i>B</i> and <i>C</i> do not overlap/intersect 			
	(b)		10	1	B1 : cao			
	(c)		14	1	B1 : cao			
	(d)		1 / 100%	1	B1 : correct probability oe, so 1 or 100% or 9/9 etc.			
9		Volume of prism = $\frac{1}{2}(6)(8)(5)$	Solid A +	4	B1 : 0.288 kg = 288 g OR converts between kg/cm ³ to g/cm ³			
		= 120 cm ³ \therefore density is $\frac{288}{288} = 2.4$ g/cm ³ so it	wonning		P1 : process to work out volume of the prism using 'area of cross section x length'. Condone omission of $\frac{1}{2}$ in formula for area of a triangle			
		is solid A			P1 : uses density = $\frac{\text{mass}}{\text{volume}}$ with some value for mass and their 120 in the denominator			
					A1 : obtains density as 2.4 g/cm^3 and chooses solid A. Solution must be fully correct with no errors seen			

СМ	CM GCSE Practice Papers / Set A / Paper 1H (AQA FINAL VERSION)							
Question		Working	Answer	Mark	Notes			
10	(a)		example	1	B1: any valid example, i.e. 1 and 2			
	(b)	$15 \cdot 25 \implies 30 \cdot 25 \implies 30 \cdot 25 \implies 6 \cdot 5$	6:5	3	M1 : writes the mixed fractions as improper fractions			
	4 8	4 8 8 8			M1: attempting a common denominator			
					A1 : correct ratio in the required form			
11		Let $w = no.$ of written qs, $m = no.$ of	15 written qs, 25 multiple choice qs	written 5 s, 25 ultiple bice qs	P1 : any one correct equation (accept any variables)			
		m + w = 40			P1 : a second correct equation with variables that are consistent with the first			
		$3w + 5m = 170$ $2m = 50 \Rightarrow m = 25$ $\Rightarrow w = 40 - 25 - 15$			M1 : attempts to solve the equations simultaneously (i.e. makes coefficients the same and subtracts/adds or uses substitution)			
		$\rightarrow n = \pm 0$ $25 = \pm 5$			A1 : either $m = 25$ or $w = 15$			
					A1 : both $m = 25$ and $w = 15$			

СМ	CM GCSE Practice Papers / Set A / Paper 1H (AQA FINAL VERSION)							
Question		Working	Answer	Mark	Notes			
12	(a)	23;	23,6	2	B1: for 23 corresponding to 10–20			
		6			B1 : for 6 corresponding to 50–60			
	(b)	12 + 23 + 18 = 53	2756	3	M1 : adds 12 + 23 + their 23			
		$\frac{53}{100} \times \frac{52}{99} = \frac{2756}{9900}$ 9900		dM1: $\frac{\text{their '53'}}{100} \times \frac{(\text{their 53}) - 1}{99}$				
					A1 : correct probability oe			
	(c)		Box plot	3	B1 : whiskers at 8 and 54			
					M1 : any one of: median = 28 s, $LQ = a$ value between 15.5 – 16, $UQ = a$ value between 36.5 – 37.5			
					A1 : fully correct box plot (same tolerance with LQ and UQ as above permitted)			
13	(a)		x = 60	2	M1 : interior angle is 120 or exterior angle is 60 A1 : $x = 60$. Condone $x = 60^{\circ}$ or just 60 on the answer line			

СМ	CM GCSE Practice Papers / Set A / Paper 1H (<u>AQA FINAL VERSION</u>)					
Question		Working	Answer	Mark	Notes	
	(b)	$y = 120 - 90 = 30^{\circ}$	$10\sqrt{3}$	5	M1 : correct value of <i>y</i>	
		$BF = 2 \times 10 \cos 30 = 10\sqrt{3}$			M1 : considers 10 cos(their 30)	
					B1 : sight of $\cos 30 = \frac{\sqrt{3}}{2}$, $\sin 30 = \frac{1}{2}$ or $\tan 30 = \frac{\sqrt{3}}{3}$ oe (whichever is relevant to their 10cos30)	
					$M1: BF = 2 \times \text{their } 10 \text{cos} 30$	
					A1 : $BF = 10\sqrt{3}$	
14	(a)		$a_n = 3a_{n-1}$	1	B1 : cao	
	(b)		interpretati on	1	C1 : any correct interpretation, e.g. 'initial number of bacteria (in colony)', 'number of bacteria at the beginning / at 0 hours'	
	(c)	$a_1 = 3(100) = 300$	2700	3	P1 : substitutes 100 into their iterative formula	
		$a_2 = 3(300) = 900$			P1 : uses their value of a_1 to find a_2	
		$a_3 = 3(900) = 2700$			A1 : correct value of $a_3 = 2700$	

СМ	CM GCSE Practice Papers / Set A / Paper 1H (AQA FINAL VERSION)						
Question		Working	Answer	Mark	Notes		
15		Total number of balls in bag is $x + 5x + 20x = 26x$ for some integer x	$\frac{2}{65}$	4	P1 : attempts to use proportions correctly to deduce relationship between number of balls in the bag.		
		so P(green) = $\frac{5}{26}$			A1 : Correct (expression for) total number of balls in bag, e.g. 26, 52,, or $26x$, $52x$,, etc Can be implied by correct probability		
		$\therefore P(\text{two greens}) = \frac{5}{26} \times \frac{4}{25}$			A1 : correct probability for taking one green from bag oe		
		$=\frac{1}{5}\times\frac{2}{13}=\frac{2}{65}$			A1: correct final probability oe		
		5 15 05			SC: inverted proportions, i.e. 5 red balls for every green, etc., scores 0/4.		
16	(a)	$(x+2)(x-4) = x^2 - 2x - 8$	a = -2, 3	3	M1 : $(x+2)$ or $(x-4)$ as a factor (must see another linear factor)		
			b = -8		M1 : expands brackets		
					A1 : correct values		
	(b)		descriptio n	1	C1 : translation by $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$		

СМ	CM GCSE Practice Papers / Set A / Paper 1H (<u>AQA FINAL VERSION</u>)							
Qu	estion	Working	Answer	Mark	Notes			
17	(a)	$y = \frac{2x+1}{2}$	$f^{-1}(x) = \frac{1}{x-2}$	2	M1 : sets $y = f(x)$ and attempts to make x the subject			
		x $xy = 2x + 1$ $x(y-2) = 1$ $x = \frac{1}{y-2}$ so $f^{-1}(x) = \frac{1}{x-2}$			A1 : correct final expression oe. In particular, $f^{-1}(x) = -\frac{1}{2-x}$ is a common correct alternative			
	(b)	$\frac{2(x^2-5)+1}{x^2-5} = 0 \Rightarrow 2(x^2-5)+1=0$ $2x^2-9=0$ $x^2 = \frac{9}{2} \Rightarrow x = \pm \sqrt{\frac{9}{2}} = \pm \frac{3}{\sqrt{2}} = \pm \frac{3\sqrt{2}}{2}$	$\pm \frac{3}{2}\sqrt{2}$	4	M1 : substitutes $x^2 - 5$ for x in f(x) dM1 : obtains $2x^2 - 9 = 0$ and attempts to solve it for x A1 : for $x = (\pm)\sqrt{\frac{9}{2}}$ oe (condone omission of \pm) A1 : $x = \pm \frac{3}{2}\sqrt{2}$, cao			

СМ	CM GCSE Practice Papers / Set A / Paper 1H (<u>AQA FINAL VERSION</u>)							
Question		Working	Answer	Mark	Notes			
18	(a)		b – a	1	B1 : cao			
	(b)	e.g. $\overrightarrow{DB} = \frac{1}{4}(\mathbf{b} - \mathbf{a}) = \frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{a}$	proof	4	B1 : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ or $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC}$ seen or implied at any stage			
		$\overrightarrow{RC} = \overrightarrow{RD} + \overrightarrow{DC} = \frac{1}{2}a + \frac{1}{2}b + a$			M1 : correct expression for \overrightarrow{OD} or \overrightarrow{DB} in terms of a and b			
		$b\mathbf{C} = bD + D\mathbf{C} = \frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \mathbf{C}$			dM1 : attempts to find \overrightarrow{BC} or \overrightarrow{OC} in terms of a and b			
		$\therefore \overrightarrow{AC} = \mathbf{b} + \frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \mathbf{c}$			C1 : convincingly obtains that $\overrightarrow{AC} = \frac{1}{4}(\mathbf{a} + 3\mathbf{b} - 4\mathbf{c})$ and explains			
		$=\frac{1}{4}\mathbf{a}+\frac{3}{4}\mathbf{b}-\mathbf{c}$			that it is parallel to $\mathbf{a} + 3\mathbf{b} - 4\mathbf{c}$ because it is a multiple of it			
		$=\frac{1}{4}(\mathbf{a}+3\mathbf{b}-4\mathbf{c})$						
		since \overrightarrow{AC} is a multiple of $\mathbf{a} + 3\mathbf{b} - 4\mathbf{c}$, it is parallel to it						