

AS Level / Year 1 Custom Mock 2

December 2017 Mocks

Question	Scheme	AO	Marks	
1				
	$(3-k)^2 - 4(k)(-4) = 0$ Uses the discriminant	AO1.1a	M1	
	$\Rightarrow k^{2} + 10k + 9 = 0 \Rightarrow k =$ Forms a 3TQ and attempts to solve their 3TQ	AO1.1a	dM1	
	k = -1, k = -9 Scores 3/3.	AO1.1b	A1	
			3	
	Question 1 Notes			
1 st M1 – this	mark is for substituting the values of a , b and c from the quadratic into $b^2 - 4ac \{=0\}$. Looking for the	correct exp	pression	
only, so igno	pre <,>, \leq , \geq . Condone sign errors in substituted values of a, b and c .			
2 nd M1 – this mark is for forming a 3TQ and attempting to solve it using factorising, completing the square or the quadratic formula. This is dependent on the 1 st M1				
A1 – correct	values of <i>k</i> , both values must be present to score the marks.			

Question	Scheme	AO	Marks		
2					
(a)	$\sqrt{a} + 2\sqrt{a} = 3$ Uses $a^{\frac{1}{2}} = \sqrt{a}$ oe Uses $\sqrt{4a} = 2\sqrt{a}$ oe	AO1.1a AO1.1a	M1 M1		
	$\sqrt{a} = 1 \Rightarrow a = 1$ Correct solution only	AO1.1b	A1		
			3		
	Question 2 Notes				
1 st M1 – use	1 st M1 – uses $a^{\frac{1}{2}} = \sqrt{a}$ OR $\sqrt{4a} = (4a)^{\frac{1}{2}}$				
2 nd M1 – use	2^{nd} M1 – uses $\sqrt{4a} = 2\sqrt{a}$ OR $(4a)^{\frac{1}{2}} = 2a^{\frac{1}{2}}$				
A1 – correct	solution only. Additional solutions score A0				

Question	Scheme	AO	Marks
3			
Method 1	$\frac{2-x}{x} < 3 \Rightarrow x(2-x) < 3x^2$ Multiplies by x^2 . For multiplication by x, see special case in notes	AO1.1a	M1
	$2x^2 - x > 0$ Obtains the correct inequality oe	AO1.1b	A1 oe
	CVs $x = 0$, $x = \frac{1}{2}$ CVr $x = 0$, $x = \frac{1}{2}$	AO1.1b	A1
	Solution set = $\begin{cases} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	AO1.1a	M1
	$\Rightarrow \text{ Solution set} = \left\{ x : x < 0 \text{ or } x > \frac{1}{2} \right\}$ Correct solution set. Other equivalent formulations of the set should be accepted	AO1.2	A1FT
			[5]
Method 2	2-x $2-x$ Attempts a common denominator	AO1.1a	M1
	$\frac{x}{x} \xrightarrow{x} x x \xrightarrow{x} x x x x x x x x x x x x x x x x x x $	AO1.1b	A1
	Case 1: $2-4x < 0$ and $x > 0$ $\{\Rightarrow x > \frac{1}{2}\}$ Identifies the two correct cases	AO1.1b	A1
	Case 2: $x < 0$ and $2 - 4x > 0 \{ \Rightarrow x < 0 \}$		
	$\Rightarrow \text{Solution set} = \begin{cases} r \mid r < 0 \text{ or } r > 1 \end{cases}$ Method to find solution set	AO1.1a	M1
	\Rightarrow solution set $= \begin{bmatrix} x \cdot x < 0 \text{ of } x > \frac{\pi}{2} \end{bmatrix}$ Correct solution set. Other equivalent formulations of the set should be	AO1.2	A1FT
	$OR \left\{ x : x < 0 \right\} \cup \left\{ x : x > \frac{1}{2} \right\}$		[5]
			5

	Question 3 Notes
SPECIAL C	ASE:
Multiplication	h by x can score M0 A0 A0 M1 A1FT max.
2 nd M1 for at	tempting to solve their linear inequality (most probably, $2 - x < 3$).
3 rd A1 for co	rrect solution set following their inequality i.e. $\{x : x < -1\}$ (oe).
Method 1:	
1 st M1 – can	also see multiplication by x^4 , x^6 , etc., which can score the M1.
1 st A1 – for tl inequality for	he correct quadratic inequality. Candidates that multiply by higher powers must reduce their inequality to a quadratic r this mark. This can be implied by the correct CVs.
2 nd A1 - corr	rect CVs. Additional CVs is A0.
2 nd M1 – this appropriate g	s is not a dependent method mark. This is for an attempt to solve their inequality. This can be done through use of an graph, for example; sketching the appropriate graph and indication of the relevant region is M1.
3 rd A1FT – th condoned.	his is for the correct solution set. The set can be expressed in any correct way. Use of x instead of $x \in \mathbb{R}$ should be This is ft their quadratic inequality.
Method 2:	
1 st M1 – atte	mpts to form a correct common denominator with all terms on one side of the inequality.
$1^{st} A1 - for c$	correct workings so far (i.e. correct inequality obtained)
2 nd A1 – use	s cases to solve the inequality.
2 nd M1 – this set/range of	is not a dependent method mark. This is for an attempt to find the correct solution set. It is for an attempt to find the values that satisfy both restrictions (if appropriate) and then taking the union of their corresponding sets.
3 rd A1 FT – t condoned.	this is for the correct solution set. The set can be expressed in any correct way. Use of x instead of $x \in \mathbb{R}$ should be This is ft finding the intersection of their two restrictions on x

07/12/17 FINAL

Question	Schen	ne	AO	Marks
4				
(a) Method 1	$2^{2(6-3x)} = 2^{3(2y)}$	Attempts to convert both sides into base 2. Can be implied	AO1.1a	M1
	$2(6-3x) = 3(2y) \Longrightarrow y = 2-x$	Correct expression	AO1.1b	A1 [2]
(a) Method 2	$\log(4^{6-3x}) = \log(8^{2y}) \Longrightarrow (6-3x)\log 4 = 2y\log 8$	Takes logs (any base) and uses the power rule	AO1.1a	M1
	$6-3x = \frac{3}{2}(2y) \Longrightarrow y = 2-x$	Correct expression	AO1.1b	A1 [2]
(b) Method 1	$(x-2)^{2} + 9(2-x)^{2} = 10$	Substitutes their <i>y</i> in terms of <i>x</i> into the second equation	AO2.2	M1
	$x^{2} - 4x + 4 + 9(4 - 4x + x^{2}) = 10$	Expands brackets and attempts to form a 3TQ	AO1.1a	dM1
	$\Rightarrow x^2 - 4x + 3 = 0$	Correct quadratic expression	AO1.1b	A1
	So $x = 1, 3$	Correct values of <i>x</i>	AO1.1b	A1
	When $x = 1 \Rightarrow y = 1$	Substitutes their x to find y	AO1.1a	dM1
	When $x = 3 \Rightarrow y = -1$	Correct values of x and y	AO1.1b	A1
				[6]

(b) Method 2	$(2-y-2)^2 + 9y^2 = 10$	Substitutes for x in the equation	AO2.2	M1		
	$y^2 + 9y^2 = 10 \implies 10y^2 - 10 = 0$	Attempts to form a 3TQ	AO1.1a	dM1		
		Correct 3TQ	AO1.1b	A1		
	So <i>y</i> =-1, 1	Correct values of y	AO1.1b	A1		
	When $y = 1 \Longrightarrow x = 1$	Substitutes their y to find x	AO1.1a	dM1		
	When $y = -1 \Rightarrow x = 3$	Correct values of x and y	AO1.1b	A1		
				[6]		
				8		
		Question 4 Notes	·			
(a) Method						
M1 – attemp	ts to covert both sides of the equation to base 2. C	condone errors like $\left(a^{b} ight)^{c}=a^{b+c}$. This can be implied – f	for example,	, by a		
correct equation.						
(a) Method 2	(a) Method 2					
M1 – takes l	v11 – takes logs and uses the power rule. Candidates can use any base.					

Question	Scheme		AO	Marks
5				
(a)	$f(4) = -2(4)^{3} + 9(4)^{2} - (4) - 12$ = -128 + 144 - 4 - 12 = 0 ∴ the curve y = f(x) crosses the x axis when x = 4	Substitutes 4 into f and shows that it is equal to 0 (all of the terms or groups of terms must be evaluated) and concludes: 'therefore, it crosses {the <i>x</i> axis} when <i>x</i> = 4' oe	AO2.1	B1 [1]
(b) Method 1	$ \frac{-2x^{2} + x + 3}{x - 4 - 2x^{3} + 9x^{2} - x - 12} - \frac{-2x^{3} + 8x^{2}}{x - 12} + 1x^{2} - 1x (*) + \frac{1x^{2} - 4x}{3x - 12} - \frac{3x - 12}{0} $	Attempts to find the other quadratic factor by long division All working leading up to and including the line (*) correct, including the $-2x^2$ in the quotient	AO1.1a AO1.1b	M1 A1
	$f(x) = (x-4)(-2x^2 + x + 3)$ = -(x-4)(2x-3)(x+1)	Attempts to factorise their quadratic factor Correct factorisation oe (e.g. accept –ve sign distributed into one of the factors)	AO1.1a AO1.1b	dM1 A1 [4]

(b) Method 2	$f(x) = (x-4)(-2x^2 + bx + 3)$ Attempts to find outQuadratic factor	t quadratic factor using inspection factor of the form $2x^2 + bx + 3$.1a .1b	M1 A1
	$f(x) = (x-4)(-2x^2 + x + 3)$ $= -(x-4)(2x-3)(x+1)$ Attempts to factorise Correct factorisation -ve sign distribution	e their quadratic factor n oe (e.g. accept buted into one of the factors)	.1a .1b	dM1 A1 [4]
(c)	$x-4 = -1, \frac{3}{2}, 4$ $\Rightarrow x = 3, \frac{11}{2}, 8$ Sets $x-4$ equal to at roots of the constant	t least one of the AO2 their graph in (c) prrect values of <i>x</i> AO1	2.2 .1b	M1 A1 [2]
	Question 5 Notes			7

(a) B1 – substitutes 4 into f, **shows** that it is 0 and then gives a conclusion. At least some of the terms have to be evaluated here, either individually or in groups. For example,

 $f(4) = -2(4)^3 + 9(4)^2 - (4) - 12 = 0$ is NOT enough and scores B0, but $f(4) = -2(4)^3 + 9(4)^2 - (4) - 12 = 16 - 16 = 0$ is OK

The conclusion requires something simple: 'therefore, it crosses the x axis at 4' oe

(b) Method 1:

 2^{nd} M1 – writes their factor $ax^2 + bx + c = (px + r)(qx + s)$, where $pq = \pm a$, $rs = \pm c$ (M0 if their quadratic factor is irreducible)

(b) Method 2:

1st M1 – attempts to find the quadratic factor by inspection. This mark is awarded for one the coefficients of the quadratic factor correct.

 $1^{st} A1$ – their quadratic factor of the form $-2x^2 + bx + 3$ for some number **or letter** *b*.

 2^{nd} M1 – writes their factor $ax^2 + bx + c = (px + r)(qx + s)$, where $pq = \pm a$, $rs = \pm c$ (M0 if their quadratic factor is irreducible)

Question	Scheme		AO	Marks
6				
(a/i)	e.g. $5x + 2(2 - x) = 3 \implies x =$	Eliminates one variable from the two equations of the circles	AO3.1a	M1
	$x = -\frac{1}{3}, y = \frac{7}{3}$	Correct centre of the circle. Accept coordinates etc.	AO1.1b	A1 [2]
(a/ii)	$(x-2)^{2} - 4 + (y+1)^{2} - 1 = 0$	Completes the square on both <i>x</i> and <i>y</i> terms	AO1.1a	M1
	Radius is $\sqrt{5}$	Correct radius oe	AO1.1b	A1 [2]
(b)	Distance between centre and A is $\sqrt{\left(-\frac{1}{3}-1\right)^2 + \left(\frac{7}{3}-1\right)^2} = \frac{2\sqrt{29}}{3}$	Method to find distance between (1, –1) and their centre of the circle	AO1.1a	M1
	$\frac{2\sqrt{29}}{3} > \sqrt{5}$, so (1, –1) lies outside the circle	Convincing proof with comparison and no errors seen	AO1.1a	A1 [2]
(c)	$\frac{2\sqrt{29}}{3} - \sqrt{5} = \{\text{awrt}\}\ 1.35$	Subtracts their $\sqrt{5}$ from their $\frac{2\sqrt{29}}{3}$ or the other way around	AO1.1a	M1
		Awrt 1.35	AO1.1b	A1 [2]
(d)	$(1)^{2} (7)^{2} 485$	LHS correct	AO1.1b	B1
	$\left(\begin{array}{c}x+\overline{3}\\\end{array}\right)+\left(\begin{array}{c}y-\overline{3}\\\end{array}\right)=\overline{36}$	RHS correct	AO1.1b	B1
				[2]

07/12/17 FINAL

(e)	$\sqrt{\frac{485}{36}} - \sqrt{5} > 0$, so C_2 is not completely contained within C_1	Correct answer with some justification that the radius of C_2 is greater than C_1	AO2.1	B1 [1]
				11

Question	Scheme	AO	Marks
7			
(a)	$\left(2 - \frac{1}{\sqrt{x}}\right)^8 = 2^8 + \binom{8}{1} (2)^7 \left(-\frac{1}{\sqrt{x}}\right)^1 + \binom{8}{2} (2)^6 \left(-\frac{1}{\sqrt{x}}\right)^2 + \\ + \binom{8}{3} (2)^5 \left(-\frac{1}{\sqrt{x}}\right)^3 + \dots$ See notes for mark breakdown	AO1.1b AO1.1a AO1.1b AO1.1b	B1 M1 A1 A1
	$\left(2 - \frac{1}{\sqrt{x}}\right)^8 = 256 - \frac{1024}{\sqrt{x}} + \frac{1792}{x} - \frac{1792}{\sqrt{x^3}} + \dots$ Correct binomial expansion oe (accept $\frac{1}{\sqrt{x}} = \frac{1}{x^{\frac{1}{2}}} = x^{-\frac{1}{2}}$ etc.)	AO1.1b	A1 oe [5]
(b/i)	$(1+x)^{r} = 1^{r}x^{0} + \binom{r}{1}x^{1} + \binom{r}{2}x^{2} + \dots + 1^{0}x^{r}$ $= 1 + rx + \binom{r}{2}x^{2} + \dots + x^{r}$ Uses the binomial expansion. Need to see 1 and rx appearing clearly. Some candidates may also use $(1+x)^{r} = 1 + rx + \frac{r(r-1)}{2!}x^{2} + \dots$	AO2.1	M1
	$\binom{r}{2}x^2 + \dots + x^r \ge 0$, since $x > 0$, so $(1+x)^r \ge 1 + rx$ Convincing proof with an explanation. Accept >.	AO2.4	A1 [2]
(b/ii)	LHS = $(1+0)^r = 1^r = 1$ Correct verification	AO2.1	B1
	RHS = $1+r(0)=1$ LHS = RHS, so true for $x=0$		[1]

07/12/17 FINAL

(b/iii)	e.g. let $x = -3$, then if $r = 5$, we have LHS = $(1-3)^5 = -32$ RHS = $1+5(-3) = -14$	Attempts to use a suitable counter- example: picks a value of $x < -1$, substitutes it into the LHS and RHS with a fixed <i>r</i> and attempts to LHS < RHS	AO2.1	M1		
	LHS < RHS, therefore it is not true for $x < -1$.	Convincing proof with conclusion	AO2.1	A1 [2]		
				10		
	Questic	on 7 Notes				
(a) B1 – sig	nt of 2 ⁸ as the constant term oe					
1 st M1 – terr	m of the form $\binom{8}{r} (2)^{8-r} \left(-\frac{1}{\sqrt{x}}\right)^r$ or equivalent for any $r, r \neq 0$,8 (in particular, accept $8-r$ and r switch	ed).			
1 st A1 – at le	east any two terms of the expansion correct, unsimplified or be	etter				
2 nd A1 – the	four terms required terms given, unsimplified or better. Ignore	extra terms				
3 rd A1 – cor	rect expansion, with each term simplified. Accept equivalent sin	mplified forms. Ignore extra terms				
SC: first 4 te B1M1A1A0	erms in ascending powers of <i>x</i> (or any other 4 terms given inste A0.	ead of the first 4 descending in <i>x</i>) can score	e at most			
(b/i) M1 – u without a fin	(b/i) M1 – uses the binomial expansion with the terms 1 and <i>rx</i> clearly appearing. Needs to show one extra term and the final term. '+' without a final term is not sufficient as this can suggest the series is infinite.					
A1 – justifie	A1 – justifies the inequality by stating that the other terms are positive.					
Note: Accep	Note: Accept > instead of \geq .					
(b/iii) M1 – not satisfy tl arbitrary.	(b/iii) M1 – a suitable counter-example: for this mark, candidates need to pick a value of $x < -1$ and attempt to show that this value does not satisfy the inequality for any integer r (i.e. substituting into both sides of the inequality). NOTE: r does not have to be non-negative or arbitrary.					

A1 – complete and convincing proof with a conclusion.

Question	Scheme	AO	Marks
8			
(a)	$2x - 4y = 10 \Rightarrow y =$ Attempts to make y the subject	AO1.1a	M1
	$y = \frac{1}{2}x - \frac{5}{2}$, so $m_{l_2} = \frac{1}{2}$		
	$\Rightarrow m_{l_1} = -2$ Correct gradient of l_1	AO1.1b	A1 [2]
	Credit in (c) can be given for work in (b), but credit in (b) cannot be given for work in (c)		
(b)	$l_1: y = -2x + c$, so $A\left(\frac{c}{2}, 0\right)$, $B(0, c)$ Attempts to find expressions for the points A and B	AO3.1a	M1
	$\frac{1}{2}\left(\frac{c}{2}\right)(c) = 4 \Rightarrow c^2 = 16$ Attempts to use area of right-triangle formula with their A and B co/ords	AO2.2	M1
	Correct expression: $c^2 = 16$	AO1.1b	A1
	$\Rightarrow c = -4 \{c \neq 4\}$		
	A(-2,0), B(0,-4) Correct coordinates of A and B	AO2.2	A1 [4]

(c)	$y = -2x - 4 \Longrightarrow 2x + y + 4 = 0 \{k = 4\}$	Substitutes their y coordinate of B as 'c' in the equation of l_1	AO1.1a	M1
		Correct equation of l_1 in required form or value of <i>k</i> stated. Value of <i>k</i> stated alone is 2/2	AO1.1b	A1 [2]
(d)	$D\left(0,-\frac{5}{2}\right)$	Correct coordinates of D	AO3.1a	B1
	e.g. $-2x - 4 = \frac{1}{2}x - \frac{5}{2} \Longrightarrow x =$	Attempts to find the coordinates of <i>C</i> by solving their equation for l_1 and the equation of l_2 simultaneously. Can be implied by correct coordinates	AO3.1a	M1
	$C\left(-\frac{3}{5},-\frac{14}{5}\right)$	Correct coordinates of C	AO1.1b	A1
	Area of <i>OACD</i> = area of <i>OAB</i> – area of <i>BCD</i> Area of <i>BCD</i> = $\frac{1}{2} \left(\frac{3}{5} \right) \left(4 - \frac{5}{2} \right) = \frac{9}{20}$	Area of <i>BCD</i> with subtraction seen (using their <i>C</i> and <i>D</i>)	AO3.1a	dM1
	\Rightarrow area of OACD = $4 - \frac{9}{20} = \frac{71}{20}$	Correct area	AO2.1	A1 [5]
				13

	Question 8 Notes		
(d) 2 nd M1 – there are likely to be many ways to find the area of the quadrilateral. For this mark, candidates need to calculate the relevant, unknown areas involved using their C and/or D, and then show use of subtraction/addition.			
Alternative both the are	for (d): 2 nd M1 – can split the quadrilateral OACD into a right-triangle and a trapezium. M mark is for attempting to calculate a of the trapezium and triangle (ft their C and/or D) and adding these together.		