GCSE (9-1)
Paper 1H (Non-calculator)

Practice set A

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
1		$\begin{array}{r} 1 2 \longdiv { 6 5 0 } \\ \underline{60} \\ 10 \\ -0 \\ \hline 0 \end{array}$	50.83		M1 : sight of ' 50 ', ' 60 ' or ' 10 ' arising from a long division method
					M1 : sight of 10/12
					A1 : cao
2	(a)	Arithmetic	Correct term	1	B1 : correct term circled. Accept other markings if unambiguous, i.e. a tick. Multiple ticks/circles score B0 if their final response is not made clear
	(b)	$\begin{aligned} & 2-6=-4 \\ & -4(1)+c=6 \text { implies } c=10 \end{aligned}$	$-4 n+10$	2	M1 : $4 n$ or $-4 n$ seen
					A1: correct nth term
3	(a)	$\begin{aligned} & 8-5=3 \\ & \sqrt{5^{2}-3^{2}}=4 \\ & A E=3+4=7(\mathrm{~cm}) * \end{aligned}$	Shows result	3	P1 : formation a right-angled triangle with base 3, may be on diagram and can be implied
					P1 : sight of $\sqrt{5^{2}-3^{2}}$
					A1 : complete and convincing proof

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
	(d/ii)		$\begin{aligned} & \text { No + } \\ & \text { reason } \end{aligned}$	1	C1 : no + explains with (at least) one of the following: - idea that 1 and $x^{2}+2 x+1$ are not the only factors - uses a counter-example, i.e. when $x=1, x^{2}+2 x+1=4$, which is not prime
5	(a)		1	1	B1 : cao
	(b)		3	1	B1 : cao
	(c)		$\begin{aligned} & \text { No + } \\ & \text { reason } \end{aligned}$	1	C1 : no + idea that the gradients are not the same. If candidates use illustration, they must make clear that they are referring to the gradients of the line. For example, 'no, since $1 \neq-1$ ' is not enough, as they must mention the word gradient.
	(d)		1	1	B1FT: if answer to (c) is no, then they should give 1. If answer to (c) is yes, then they should give 0 .
6	(a)		Yes + reason	1	C 1 : yes + explains with (at least) one of the following: - probability of B and C occurring is 0 - the events/circles B and C do not overlap/intersect
	(b)		10	1	B1 : cao

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
	(c)		14	1	B1 : cao
	(d)		1/100\%	1	B1 : correct probability oe, so 1 or 100% or 9/9 etc.
7		Volume of prism $=\frac{1}{2}(6)(8)(5)$ $=120 \mathrm{~cm}^{3}$ \therefore density is $\frac{288}{120}=2.4 \mathrm{~g} / \mathrm{cm}^{3}$, so it is solid A	Solid A + working	4	B1: $0.288 \mathrm{~kg}=288 \mathrm{~g}$ OR converts between $\mathrm{kg} / \mathrm{cm}^{3}$ to $\mathrm{g} / \mathrm{cm}^{3}$ P1 : process to work out volume of the prism using 'area of cross section x length'. Condone omission of $1 / 2$ in formula for area of a triangle
					P1 : uses density $=\frac{\text { mass }}{\text { volume }}$ with some value for mass and their 120 in the denominator
					A1 : obtains density as $2.4 \mathrm{~g} / \mathrm{cm}^{3}$ and chooses solid A. Solution must be fully correct with no errors seen
8	(a)		example	1	B1: any valid example, i.e. 1 and 2
	(b)	$\frac{15}{4}: \frac{25}{8} \Rightarrow \frac{30}{8}: \frac{25}{8} \Rightarrow 30: 25 \Rightarrow 6: 5$	6:5	3	M1 : writes the mixed fractions as improper fractions
					M1: attempting a common denominator
					A1 : correct ratio in the required form

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working $\begin{aligned} & y=120-90=30^{\circ} \\ & B F=2 \times 10 \cos 30=10 \sqrt{3} \end{aligned}$	Answer $10 \sqrt{3}$	$\begin{gathered} \text { Mark } \\ \hline 5 \end{gathered}$	Notes
	(b)	$\begin{aligned} & y=120-90=30^{\circ} \\ & B F=2 \times 10 \cos 30=10 \sqrt{3} \end{aligned}$	$10 \sqrt{3}$		M1 : correct value of y
					M1 : considers $10 \cos$ (their 30)
					B1 : sight of $\cos 30=\frac{\sqrt{3}}{2}, \sin 30=\frac{1}{2}$ or $\tan 30=\frac{\sqrt{3}}{3}$ oe (whichever is relevant to their $10 \cos 30$)
					$\mathrm{M} 1: B F=2 \times$ their $10 \cos 30$
					A1 : $B F=10 \sqrt{3}$
11		Let $w=$ no. of written qs, $m=$ no. of mc qs$\begin{aligned} & m+w=40 \\ & 3 w+5 m=170 \\ & 2 m=50 \Rightarrow m=25 \\ & \Rightarrow w=40-25=15 \end{aligned}$	$\begin{gathered} 15 \text { written } \\ \text { qs, } 25 \\ \text { multiple } \\ \text { choice qs } \end{gathered}$	5	P1 : any one correct equation (accept any variables)
					P1 : a second correct equation with variables that are consistent with the first
					M1 : attempts to solve the equations simultaneously (i.e. makes coefficients the same and subtracts/adds or uses substitution)
					A1 : either $m=25$ or $w=15$
					A1 : both $m=25$ and $w=15$

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
12	(a)		$a_{n}=3 a_{n-1}$	1	B1 : cao
	(b)		interpretati on	1	C 1 : any correct interpretation, e.g. 'initial number of bacteria (in colony)', 'number of bacteria at the beginning / at 0 hours'
	(c)	$\begin{aligned} & a_{1}=3(100)=300 \\ & a_{2}=3(300)=900 \\ & a_{3}=3(900)=2700 \end{aligned}$	2700	3	P1 : substitutes 100 into their iterative formula
					P1: uses their value of a_{1} to find a_{2}
					A1: correct value of $a_{3}=2700$
13	Total number of balls in bag is $x+$ $5 x+20 x=26 x$ for some integer $x$$\begin{aligned} & \text { so } \mathrm{P}(\text { green })=\frac{5}{26} \\ & \therefore \mathrm{P}(\text { two greens })=\frac{5}{26} \times \frac{4}{25} \\ & =\frac{1}{5} \times \frac{2}{13}=\frac{2}{65} \end{aligned}$	Total number of balls in bag is $x+$ $5 x+20 x=26 x$ for some integer $x$$\begin{aligned} & \text { so } \mathrm{P}(\text { green })=\frac{5}{26} \\ & \therefore \mathrm{P}(\text { two greens })=\frac{5}{26} \times \frac{4}{25} \\ & =\frac{1}{5} \times \frac{2}{13}=\frac{2}{65} \end{aligned}$	$\frac{2}{65}$	4	P1 : attempts to use proportions correctly to deduce relationship between number of balls in the bag.
					A1 : Correct (expression for) total number of balls in bag, e.g. 26, $52, \ldots$, or $26 x, 52 x, \ldots$, etc.. Can be implied by correct probability
					A1 : correct probability for taking one green from bag oe
					A1: correct final probability oe
					SC: inverted proportions, i.e. 5 red balls for every green, etc., scores 0/4.

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer $\begin{aligned} a & =-2, \\ b & =-8 \end{aligned}$	$\begin{gathered} \text { Mark } \\ \hline 3 \end{gathered}$	Notes
14	(a)	$(x+2)(x-4)=x^{2}-2 x-8$	$\begin{aligned} a & =-2, \\ b & =-8 \end{aligned}$		M1 : $(x+2)$ or ($x-4$) as a factor (must see another linear factor)
					M1 : expands brackets
					A1 : correct values
	(b)		descriptio n	1	C1 : translation by $\binom{-1}{-1}$
15	(a)	$y=\underline{2 x+1}$	$\mathrm{f}^{-1}(x)=\frac{1}{x-2}$	2	M1 : sets $y=\mathrm{f}(x)$ and attempts to make x the subject
		$\begin{aligned} & x y=2 x+1 \\ & x(y-2)=1 \\ & x=\frac{1}{y-2} \\ & \text { so } \mathrm{f}^{-1}(x)=\frac{1}{x-2} \end{aligned}$			A1 : correct final expression oe. In particular, $\mathrm{f}^{-1}(x)=-\frac{1}{2-x}$ is a common correct alternative

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
15	(b)	$\begin{aligned} & \frac{2\left(x^{2}-5\right)+1}{x^{2}-5}=0 \Rightarrow 2\left(x^{2}-5\right)+1=0 \\ & 2 x^{2}-9=0 \\ & x^{2}=\frac{9}{2} \Rightarrow x= \pm \sqrt{\frac{9}{2}}= \pm \frac{3}{\sqrt{2}}= \pm \frac{3 \sqrt{2}}{2} \end{aligned}$	$\pm \frac{3}{2} \sqrt{2}$	4	M1: substitutes $x^{2}-5$ for x in $\mathrm{f}(x)$
					dM1 : obtains $2 x^{2}-9=0$ and attempts to solve it for x
					A1 : for $x=(\pm) \sqrt{\frac{9}{2}}$ oe $\quad($ condone omission of \pm)
					A1: $x= \pm \frac{3}{2} \sqrt{2}$, cao

CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)

Question		Working	Answer	Mark	Notes
16	(a)		b - \mathbf{a}	1	B1: cao
	(b)	$\begin{aligned} & \text { e.g. } \overrightarrow{D B}=\frac{1}{4}(\mathbf{b}-\mathbf{a})=\frac{1}{4} \mathbf{b}-\frac{1}{4} \mathbf{a} \\ & \overrightarrow{B C}=\overrightarrow{B D}+\overrightarrow{D C}=\frac{1}{4} \mathbf{a}-\frac{1}{4} \mathbf{b}-\mathbf{c} \\ & \therefore \overrightarrow{A C}=\mathbf{b}+\frac{1}{4} \mathbf{a}-\frac{1}{4} \mathbf{b}-\mathbf{c} \\ & =\frac{1}{4} \mathbf{a}+\frac{3}{4} \mathbf{b}-\mathbf{c} \\ & =\frac{1}{4}(\mathbf{a}+3 \mathbf{b}-4 \mathbf{c}) \end{aligned}$ since $\overrightarrow{A C}$ is a multiple of $\mathbf{a}+3 \mathbf{b}-4 \mathbf{c}$, it is parallel to it	proof	4	B1: $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$ or $\overrightarrow{A C}=\overrightarrow{A O}+\overrightarrow{O C}$ seen or implied at any stage
					M1 : correct expression for $\overrightarrow{O D}$ or $\overrightarrow{D B}$ in terms of a and \mathbf{b}
					$\mathrm{dM1}$: attempts to find $\overrightarrow{B C}$ or $\overrightarrow{O C}$ in terms of \mathbf{a} and \mathbf{b}
					C1 : convincingly obtains that $\overrightarrow{A C}=\frac{1}{4}(\mathbf{a}+3 \mathbf{b}-4 \mathbf{c})$ and explains that it is parallel to $\mathbf{a}+3 \mathbf{b}-4 \mathbf{c}$ because it is a multiple of it

