

GCSE (9-1) Paper 1H (Non-calculator)

Practice set A

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)						
Qu	estion	Working	Answer	Mark	Notes		
1		$ \begin{array}{r} 050 \\ 12)610 \\ \underline{60} \\ 10 \\ \underline{0} \\ 0 \end{array} $	50.83	3	M1: sight of '50', '60' or '10' arising from a long division method M1: sight of 10/12 A1: cao		
2	(a)	Arithmetic	Correct term	1	B1: correct term circled. Accept other markings if unambiguous, i.e. a tick. Multiple ticks/circles score B0 if their final response is not made clear		
	(b)	2-6=-4 -4(1) + c = 6 implies c = 10	-4n + 10	2	M1: 4 <i>n</i> or –4 <i>n</i> seen A1: correct <i>n</i> th term		
3	(a)	$8-5=3$ $\sqrt{5^2-3^2}=4$ $AE = 3+4=7 \text{ (cm) } *$	Shows result	3	 P1: formation a right-angled triangle with base 3, may be on diagram and can be implied P1: sight of √5²-3² A1: complete and convincing proof 		

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)						
Qu	estion	Working	Answer	Mark	Notes		
	(b)	e.g. area of triangle = $\frac{1}{2}(3)(4) = 6 \text{ {cm}}^2$ }		4	M1: partitions the compound shape into two simpler shapes, i.e. rectangle and triangle or trapezium and rectangle and attempts to calculate one relevant area		
		area of rectangle = $8 \times 3 = 24 \text{ {cm}}^2$ }			M1: combines their two (or more) areas correctly		
		total area = $24 + 6 = 30 \text{ cm}^2$			A1, A1 : value of 30, correct units cm ²		
4	4 (a)	$2a^2 - 2ab + ab - b^2$	$ab + ab - b^2$ $2a^2 - ab - b^2$	2	M1: expands the brackets and generates 4 terms, with at least two correct		
					A1 : cao		
	(b)		$2e^2f^8$	2	M1 : sight of '2' and either index of e or f correct		
					A1 : cao		
	(c)		(x+1)(x+1)	1	B1 : correct factorisation. Accept $(x+1)^2$		
	(d/i)		expln.	1	C1: e.g. 'the whole negative numbers, zero and the whole positive numbers', ', -2, -1, 0, 1, 2,'. Condone e.g. 'the whole numbers, including whole negative numbers'.		

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
	(d/ii)		No + reason	1	 C1: no + explains with (at least) one of the following: idea that 1 and x² + 2x + 1 are not the only factors uses a counter-example, i.e. when x = 1, x² + 2x + 1 = 4, which is not prime 			
5	(a)		1	1	B1 : cao			
	(b)		3	1	B1 : cao			
	(c)		No + reason	1	C1 : no + <i>idea that</i> the gradients are not the same. If candidates use illustration, they must make clear that they are referring to the gradients of the line. For example, 'no, since $1 \neq -1$ ' is not enough, as they must mention the word gradient.			
	(d)		1	1	B1FT: if answer to (c) is no, then they should give 1. If answer to (c) is yes, then they should give 0.			
6	(a)		Yes + reason	1	 C1: yes + explains with (at least) one of the following: probability of B and C occurring is 0 the events/circles B and C do not overlap/intersect 			
	(b)		10	1	B1 : cao			

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
	(c)		14	1	B1 : cao			
	(d)		1 / 100%	1	B1 : correct probability oe, so 1 or 100% or 9/9 etc.			
7		Volume of prism = $\frac{1}{2}(6)(8)(5)$	Solid A + working	4	B1: $0.288 \text{ kg} = 288 \text{ g}$ OR converts between kg/cm ³ to g/cm ³			
		$= 120 \text{ cm}^3$ $\therefore \text{ density is } \frac{288}{120} = 2.4 \text{ g/cm}^3, \text{ so it}$		P1: process to work out volume of the prism using 'area of cross section x length'. Condone omission of ½ in formula for area of a triangle				
		is solid A			P1 : uses density = $\frac{\text{mass}}{\text{volume}}$ with some value for mass and their 120 in the denominator			
					A1: obtains density as 2.4 g/cm³ and chooses solid A. Solution must be fully correct with no errors seen			
8	(a)		example	1	B1: any valid example, i.e. 1 and 2			
	(b)	$\frac{15}{4} : \frac{25}{8} \Rightarrow \frac{30}{8} : \frac{25}{8} \Rightarrow 30 : 25 \Rightarrow 6 : 5$	6:5	3	M1 : writes the mixed fractions as improper fractions			
		4 8 8 8 8			M1: attempting a common denominator			
					A1 : correct ratio in the required form			

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)						
Que	estion	Working	Answer	Mark	Notes		
9	(a)	23;	23,6	2	B1: for 23 corresponding to 10–20		
		6			B1 : for 6 corresponding to 50–60		
	(b)	12 + 23 + 18 = 53	2756	3	M1: adds 12 + 23 + their 23		
		$\frac{53}{100} \times \frac{52}{99} = \frac{2756}{9900}$	9900		dM1: $\frac{\text{their '53'}}{100} \times \frac{(\text{their 53}) - 1}{99}$		
					A1 : correct probability oe		
	(c)		Box plot	3	B1 : whiskers at 8 and 54		
					M1 : any one of: median = 28 s , LQ = a value between $15.5 - 16$, UQ = a value between $36.5 - 37.5$		
					A1 : fully correct box plot (same tolerance with LQ and UQ as above permitted)		
10	(a)		x = 60	2	M1 : interior angle is 120 or exterior angle is 60		
					A1 : $x = 60$. Condone $x = 60^{\circ}$ or just 60 on the answer line		

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Question		Working	Answer	Mark	Notes			
	(b)	$y = 120 - 90 = 30^{\circ}$ $BF = 2 \times 10 \cos 30 = 10\sqrt{3}$	10√3	5	M1 : considers $10\cos(\text{their }30)$ B1 : sight of $\cos 30 = \frac{\sqrt{3}}{2}$, $\sin 30 = \frac{1}{2}$ or $\tan 30 = \frac{\sqrt{3}}{3}$ oe (whichever is relevant to their $10\cos 30$) M1 : $BF = 2 \times \text{their }10\cos 30$ A1 : $BF = 10\sqrt{3}$			
11		Let $w = \text{no. of written qs}, m = \text{no. of}$ m = 40 3w + 5m = 170 $2m = 50 \Rightarrow m = 25$ 3w = 40 - 25 = 15	15 written qs, 25 multiple choice qs	5	P1: any one correct equation (accept any variables) P1: a second correct equation with variables that are consistent with the first M1: attempts to solve the equations simultaneously (i.e. makes coefficients the same and subtracts/adds or uses substitution) A1: either <i>m</i> = 25 or <i>w</i> = 15 A1: both <i>m</i> = 25 and <i>w</i> = 15			

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Qu	estion	Working	Answer	Mark	Notes			
12	(a)		$a_n = 3a_{n-1}$	1	B1 : cao			
	(b)		interpretati on	1	C1: any correct interpretation, e.g. 'initial number of bacteria (in colony)', 'number of bacteria at the beginning / at 0 hours'			
	(c)	$a_1 = 3(100) = 300$	2700	3	P1 : substitutes 100 into their iterative formula			
		$a_2 = 3(300) = 900$			P1 : uses their value of a_1 to find a_2			
		$a_3 = 3(900) = 2700$			A1 : correct value of $a_3 = 2700$			
13		Total number of balls in bag is $x + 5x + 20x = 26x$ for some integer x	<u>2</u> 65	4	P1: attempts to use proportions correctly to deduce relationship between number of balls in the bag.			
		so P(green) = $\frac{5}{26}$			A1 : Correct (expression for) total number of balls in bag, e.g. 26, 52,, or 26x, 52x,, etc Can be implied by correct probability			
		$\therefore P(\text{two greens}) = \frac{5}{26} \times \frac{4}{25}$			A1 : correct probability for taking one green from bag oe			
		$=\frac{1}{5}\times\frac{2}{13}=\frac{2}{65}$			A1: correct final probability oe			
		5 15 05			SC: inverted proportions, i.e. 5 red balls for every green, etc., scores 0/4.			

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)					
Que	estion	Working	Answer	Mark	Notes	
14	(a)	$(x+2)(x-4) = x^2 - 2x - 8$	a = -2,	3	M1: $(x+2)$ or $(x-4)$ as a factor (must see another linear factor)	
			<i>b</i> = -8		M1 : expands brackets	
					A1 : correct values	
	(b)		descriptio n	1	C1: translation by $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$	
15	(a)	$y = \frac{2x+1}{x}$	$f^{-1}(x) = \frac{1}{x - 2}$	2	M1 : sets $y = f(x)$ and attempts to make x the subject	
		x $xy = 2x + 1$ $x(y-2) = 1$ $x = \frac{1}{y-2}$ so $f^{-1}(x) = \frac{1}{x-2}$			A1: correct final expression oe. In particular, $f^{-1}(x) = -\frac{1}{2-x}$ is a common correct alternative	

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Que	estion	Working Ans		Mark	Notes			
15	(b)	$\frac{2(x^2-5)+1}{x^2-5} = 0 \Rightarrow 2(x^2-5)+1 = 0$	$\pm \frac{3}{2}\sqrt{2}$	4	M1 : substitutes $x^2 - 5$ for x in $f(x)$			
		$2x^2 - 9 = 0$			dM1 : obtains $2x^2 - 9 = 0$ and attempts to solve it for x			
		$x^{2} = \frac{9}{2} \Rightarrow x = \pm \sqrt{\frac{9}{2}} = \pm \frac{3}{\sqrt{2}} = \pm \frac{3\sqrt{2}}{2}$			A1: for $x = (\pm)\sqrt{\frac{9}{2}}$ oe (condone omission of \pm)			
					A1: $x = \pm \frac{3}{2}\sqrt{2}$, cao			

CM	CM GCSE Practice Papers / Set A / Paper 1H (V4 FINAL)							
Que	estion	Working	Answer	Mark	Notes			
16	(a)		b – a	1	B1: cao			
	(b)	e.g. $\overrightarrow{DB} = \frac{1}{4}(\mathbf{b} - \mathbf{a}) = \frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{a}$	proof	4	B1: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ or $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC}$ seen or implied at any stage			
		$\overrightarrow{BC} = \overrightarrow{BD} + \overrightarrow{DC} = \frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \mathbf{c}$			M1 : correct expression for \overrightarrow{OD} or \overrightarrow{DB} in terms of a and b			
					dM1: attempts to find \overrightarrow{BC} or \overrightarrow{OC} in terms of a and b			
		$\therefore \overrightarrow{AC} = \mathbf{b} + \frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \mathbf{c}$			C1: convincingly obtains that $\overrightarrow{AC} = \frac{1}{4}(\mathbf{a} + 3\mathbf{b} - 4\mathbf{c})$ and explains			
		$=\frac{1}{4}\mathbf{a}+\frac{3}{4}\mathbf{b}-\mathbf{c}$			that it is parallel to $\mathbf{a} + 3\mathbf{b} - 4\mathbf{c}$ because it is a multiple of it			
		$=\frac{1}{4}(\mathbf{a}+3\mathbf{b}-4\mathbf{c})$						
		since \overrightarrow{AC} is a multiple of $\mathbf{a} + 3\mathbf{b} - 4\mathbf{c}$, it is parallel to it						