| Surname             |                  |  |  |  |  |  |   |      |         |    |
|---------------------|------------------|--|--|--|--|--|---|------|---------|----|
| Other Names         |                  |  |  |  |  |  |   |      |         |    |
| Candidate Signature |                  |  |  |  |  |  |   |      |         |    |
|                     |                  |  |  |  |  |  |   |      |         |    |
| Centre Number       | Candidate Number |  |  |  |  |  |   |      |         |    |
|                     |                  |  |  |  |  |  | • |      |         |    |
| Examiner Comments   |                  |  |  |  |  |  |   | Tota | al Mari | ks |
|                     |                  |  |  |  |  |  |   |      |         |    |
|                     |                  |  |  |  |  |  |   |      |         |    |
|                     |                  |  |  |  |  |  |   |      |         |    |
|                     |                  |  |  |  |  |  |   |      |         |    |

# Quadratics

## **GCSE MATHEMATICS**

CM

**End of Topic Test** 

Non-calculator

Time allowed: 1 hour

#### Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You must not use a calculator.

#### Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 10 questions in this question paper. The total mark for this paper is 60.

### Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.







| 4 | / \ | T          | C 11  | . 1  | C 11   |       |              |
|---|-----|------------|-------|------|--------|-------|--------------|
|   | (a) | Hactorise  | fully | the  | tollot | vino  | expressions  |
|   | (u) | 1 detorise | Iuiiy | tiic | 10110  | 71115 | CAPICOSTOTIO |

(i) 
$$4xy - 2y$$

(1)

(ii) 
$$x^2 + 4x + 3$$

.....

(2)

(iii) 
$$2x^2 - 18x + 28$$

.....

**(2)** 

(Total for Question 1 is 5 marks)

2 Solve the equation  $x^2 + 6x - 40 = 0$ .

.....

(Total for Question 2 is 3 marks)

| 3 (a) Verify that $y = -2$ is a solution to the equation $y^2 - 4y - 12 = 0$       | ).                           |
|------------------------------------------------------------------------------------|------------------------------|
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    | (2)                          |
| (b) Find the other solution to the equation $y^2 - 4y - 12 = 0$ .                  |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    | (2)                          |
|                                                                                    |                              |
| (Tota                                                                              | l for Question 3 is 4 marks) |
| 4 Solve the equation $2x^2 - 6x + 1 = 0$ , giving your answers to two $6x + 1 = 0$ |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    |                              |
|                                                                                    | lecimal places.              |
| 4 Solve the equation $2x^2 - 6x + 1 = 0$ , giving your answers to two of           | lecimal places.              |
| 4 Solve the equation $2x^2 - 6x + 1 = 0$ , giving your answers to two of           | lecimal places.              |



5 (a) Express  $x^2 - 6x + 4 = 0$  in the form  $(x + a)^2 + b$ , where a and b are constants to be found.

*a* = .....

*b* = .....

(3)

The diagram below shows a sketch of the curve with equation  $y = x^2 - 6x + 4$ .



The point P lies on the curve and is a minimum point.

(b) Write down the coordinates of P.

.....

**(1)** 

(Total for Question 5 is 4 marks)

6



The rectangle ABCD is shown in the diagram above.

All dimensions are in centimetres.

The rectangle has area  $28\ cm^2$ .

(a) Find the value of x.

| <br>• • • • • • • • • • • • • • • • • • • • |
|---------------------------------------------|
|                                             |

**(5)** 

(b) Find the length of the line segment AC.

(c) Write down the length of the line segment *BD*.

(4)

(1)

**(2)** 

(Total for Question 6 is 8 marks)





7 The curve C has the equation y = f(x), where

$$f(x) = 3x^2 + (x-1)(2-x) + 4$$

(a) Express f(x) in the form  $ax^2 + bx + c$ , where a, b and c are constants to be found.

 $f(x) = \dots$ 

(3)

(b) Find the coordinates of the minimum point on C.

.....

**(4)** 

(c) Using your answer to part (b), explain why the curve C does not intersect the x axis.

(1)

(Total for Question 7 is 8 marks)

8 The quadratic equation  $ax^2 + bx + c = 0$  has solutions

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

(a) State the name given to this formula.

.....

**(1)** 

(b) Use the formula above to solve the equation (2x-1)(3x+3)=1.

**(5)** 

Adam has the equation  $2x^2 + px + q = 0$ .

He uses the above formula to solve it and obtains the following expression

$$x = \frac{81 \pm \sqrt{57}}{4}$$

(c) Find the values of the constants p and q.

 $p = \dots, q = \dots$ 

(3)

(Total for Question 8 is 9 marks)



| 9 | (a) By completing the square, or otherwise, prove that the equation $a^2 + 2a + 10 = 0$ has no solutions. | real |
|---|-----------------------------------------------------------------------------------------------------------|------|
|   |                                                                                                           |      |
|   |                                                                                                           |      |
|   |                                                                                                           |      |
|   | (b) Find the range of values of $k$ such that the equation $a^2 + 2a + k = 0$ has real solutions.         | (4)  |
|   |                                                                                                           |      |
|   |                                                                                                           |      |

(3)

(Total for Question 9 is 7 marks)

10 (a) State Pythagoras' Theorem and explain it using a suitable diagram.

| <br> | <br> |
|------|------|
|      |      |
| <br> | <br> |

**(2)** 

The triangle T is shown below and all measurements are given in centimetres.



(b) Show that  $x^2 - 7x + 6 = 0$ .

**(4)** 

(c) Find the length of the longest side of the triangle T.

.....cm

(3)

(Total for Question 10 is 9 marks)

Copyright © 2017 crashMATHS Ltd

**TOTAL FOR PAPER = 60 MARKS** 



