Surname	
Other Names	
Candidate Signature	

Centre Number						Candidate Number				

Examiner Comments

Total Marks

Quadratics
 GCSE MATHEMATICS

End of Topic Test

Non-calculator
Time allowed: 1 hour

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You must not use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 10 questions in this question paper. The total mark for this paper is 60 .

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

1 (a) Factorise fully the following expressions
(i) $4 x y-2 y$
\qquad
(ii) $x^{2}+4 x+3$
\qquad
(iii) $2 x^{2}-18 x+28$

2 Solve the equation $x^{2}+6 x-40=0$.

3 (a) Verify that $y=-2$ is a solution to the equation $y^{2}-4 y-12=0$.
(b) Find the other solution to the equation $y^{2}-4 y-12=0$.

4 Solve the equation $2 x^{2}-6 x+1=0$, giving your answers to two decimal places.
\qquad

5 (a) Express $x^{2}-6 x+4=0$ in the form $(x+a)^{2}+b$, where a and b are constants to be found.

$$
\begin{aligned}
& a=\ldots . ~ \\
& b= \\
& b=. ~
\end{aligned}
$$

The diagram below shows a sketch of the curve with equation $y=x^{2}-6 x+4$.

The point P lies on the curve and is a minimum point.
(b) Write down the coordinates of P.
\qquad

The rectangle $A B C D$ is shown in the diagram above.
All dimensions are in centimetres.
The rectangle has area $28 \mathrm{~cm}^{2}$.
(a) Find the value of x.
(b) Find the length of the line segment $A C$.
(c) Write down the length of the line segment $B D$.
\qquad

7 The curve C has the equation $y=\mathrm{f}(x)$, where

$$
f(x)=3 x^{2}+(x-1)(2-x)+4
$$

(a) Express $\mathrm{f}(x)$ in the form $a x^{2}+b x+c$, where a, b and c are constants to be found.

$$
\mathrm{f}(x)=
$$

\qquad
(b) Find the coordinates of the minimum point on C.
(c) Using your answer to part (b), explain why the curve C does not intersect the x axis.
\qquad
\qquad
\qquad

8 The quadratic equation $a x^{2}+b x+c=0$ has solutions

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

(a) State the name given to this formula.
\qquad
(b) Use the formula above to solve the equation $(2 x-1)(3 x+3)=1$.

Adam has the equation $2 x^{2}+p x+q=0$.
He uses the above formula to solve it and obtains the following expression

$$
x=\frac{81 \pm \sqrt{57}}{4}
$$

(c) Find the values of the constants p and q.
\qquad $q=$ \qquad

9 (a) By completing the square, or otherwise, prove that the equation $a^{2}+2 a+10=0$ has no real solutions.
(b) Find the range of values of k such that the equation $a^{2}+2 a+k=0$ has real solutions.

10 (a) State Pythagoras' Theorem and explain it using a suitable diagram.
\qquad
\qquad
\qquad

The triangle T is shown below and all measurements are given in centimetres.

(b) Show that $x^{2}-7 x+6=0$.
(c) Find the length of the longest side of the triangle T.

