Revision Maze

Find your way through the maze by finding a path of correct squares from the left side of the maze to the right side of the maze. **Rules**: you can only move up, down, left or right and on squares that are correct!

is a prime number	is 25% of a multiple of 7	probability of occuring is less than half	5th term in sequence is 32	is equivalent to $\frac{a-b}{4}$	passes through the point (0,4)	is a true statement	is a correct formula
1	3	rolling a multiple of 3 on a fair 6 sided dice	2, 4, 8, 16	$\frac{8a-8b}{32}$	line passing through (3,5) and (9,7)	the sum of three consecutive numbers is a multiple of 3	pressure = force x area
2	7	rolling a square number on a fair 6 sided dice	nth term = 7n - 2	$\frac{1}{4}a-b$	the line $y = 2x - 4$	$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$	$x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ (quadratic formula)
13	11	winning a game where probability of losing is 0.56	nth term = 6n + 2	$\boxed{\frac{3}{8}(a+b) - \frac{1}{8}(a-b)}$	graph of a against b if $a \sim b$	$\sqrt{20} = 2\sqrt{5}$	$\sqrt{a^2 + b^2} = c^2$ (Pythagoras' Theorem)
87	31.5	picking and eating two red sweets from a bag with 6 red and 4 blue sweets	fibonacci sequence with first term 8 and second term 9	$\frac{a^2 - b}{4a}$	line with gradient 4 passing through (8,36)	$\sqrt{2} \times \frac{1}{2^2} = 2^{-\frac{3}{2}}$	density = mass ÷ volume
100	24.5	choosing, at random, a prime number between 1-12 (inclusive)	nth term = 2n² - 5n + 7	$\frac{a^2 - b^2}{4a + 4b}$	line perpendicular to $y = 8x - 12$ passing through (8,3)	every positive integer is divisible by some prime	time = speed ÷ distance
119	385	P(A) P(B) P(B) 0.32	2592, 864, 288, 96	$\frac{a-b}{8} - \frac{a-b}{4}$	circle with equation $x^2 + y^2 = 4$	$\sqrt{a^2 + b^2} = a + b$	volume of prism= area of any side x length

Revision Maze

Find your way through the maze by finding a path of correct squares from the left side of the maze to the right side of the maze. **Rules**: you can only move up, down, left or right and on squares that are correct!

is a prime number	is 25% of a multiple of 7	probability of occuring is less than half	5th term in sequence is 32	is equivalent to $\frac{a-b}{4}$	passes through the point (0,4)	is a true statement	is a correct formula
1	3	rolling a multiple of 3 on a fair 6 sided dice	2, 4, 8, 16	$\frac{8a-8b}{32}$	line passing through (3,5) and (9,7)	the sum of three consecutive numbers is a multiple of 3	pressure = force x area
2	7	rolling a square number on a fair 6 sided dice	nth term = 7n - 2	$\frac{1}{4}a-b$	the line $y = 2x - 4$	$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$	$x = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$ (quadratic formula)
13	11	winning a game where probability Lof losing is 0.56	nth term = 6n + 2	$\boxed{\frac{3}{8}(a+b) - \frac{1}{8}(a-b)}$	graph of a against b if $a \sim b$	$\sqrt{20} = 2\sqrt{5}$	$\sqrt{a^2 + b^2} = c^2$ (Pythagoras' Theorem)
87	31.5	picking and eating two red sweets from a bag with 6 red and 4 blue sweets	fibonacci sequence with first term 8 and second term 9	$\frac{a^2 - b}{4a}$	line with gradient 4 passing through (8,36)	$\sqrt{2} \times \frac{1}{2^2} = 2^{-\frac{3}{2}}$	density = mass ÷ volume
100	24.5	choosing, at random, a prime number between 1-12 (inclusive)	nth term = 2n² - 5n + 7	$\frac{a^2 - b^2}{4a + 4b}$	line perpendicular to $y = 8x - 12$ passing through (8,3)	every positive integer is divisible by some prime	time = speed ÷ distance
119	385	P(A) P(B) P(B) 0.32	2592, 864, 288, 96	$\frac{a-b}{8} - \frac{a-b}{4}$	circle with equation $x^2 + y^2 = 4$	$\sqrt{a^2 + b^2} = a + b$	volume of prism= area of any side x length