Respiration is often described to be a fundamental process to all organisms.
(a) Suggest why.
[2 marks]
(b) Figure 1.1. shows a flow chart that outlines briefly the glycolytic pathway used by humans
in respiration. Figure 1.1
Glucose (6C)
Glucose-6-phosphate
1
Fructose-6-phosphate
ATP —————
* ▼
Triose phosphate (3C) Triose phosphate (3C)
Intermediate Intermediate
stages stages

Complete the flow chart.

1

[3 marks]

CM

CM CM CM CM CM CM CM

GM GM GM

CM CM CM CM CM CM CM

CM CM CM

CM CM CM CM CM CM CM

CM

CM CM CM

CM CM. CM CM CM CM CM. CM CM CM CM CM CM CM CM. CM. CM CM CM CM CM CM. CM CM. CM CM CM CM CM CM CM

CM CM CM

(c) Explain the significance of the reduced NAD produced in this pathway for an individual
respiring aerobically.
[3 marks]
(d) When glucose enters a cell, it is immediately converted into glucose-6-phosphate.
Suggest why.
[2 marks]
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not.
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not.
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway.
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?
(e) Glycolysis occurs in the cytoplasm of a cell while subsequent aerobic reactions do not. Almost all living organisms use the glycolysis pathway. What does this suggest about the evolution of the cell?

[Total: 14]

2

GM CM

CM ĊM CM CM · CM CM CM CMCM CMCM ÇΜ CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM UM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CMCM CM (M) CM CM CM GM CM CM CM CM

CM CM

(a) Draw, in the space below, the structure of an ATP molecule.
[2 marks] (b) ATP is often described as the 'universal currency of energy transfer'.
Suggest why.
[3 marks]
(c) State how many molecules, if any, of ATP are produced in the following stages of respiration.
(i) glycolysis
<u></u>
(ii) the link reaction and the Krebs (citric acid) cycle
(iii) the electron transport chain
ļ
(iv) lactate fermentation
<u></u>
[4 marks]

CM CM. CM CM CM CM CM. CM CM CM CM CM CM CM CM CM. CM CM

3

CM CMCM CM. CM CM

CM CM CM

(f) In theory, the actual ATP yield during respiration is lower than the theoretical yield.
Explain three reasons why this is the case.
1
2
3
[3 marks]
[Total: 12]
Outline, in detail, the process of oxidative phosphorylation and chemiosmosis in aerobic
respiration.
In your answer, you should use technical terms, spelt correctly.

4

CM CM

CM ĊM CM CM · CM CM CM CMCM CMCM ÇΜ CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM ΘM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM

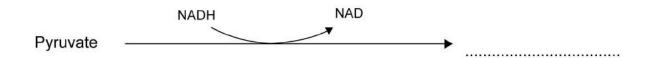
CM (M) CM CM CM CM CM ·CM CMCM CM CM CM

It was only in 1961 when Mitchell published his chemiosmosis theory.
(a) Explain what Mitchell meant by the term 'chemiosmosis'.
[3 marks]
(b) Suggest why Mitchell used the term 'chemiosmosis'.
[1 mark]
(c) The theory of chemiosmosis makes reference to a 'proton motive force'.
Explain, in detail, what you understand by the 'proton motive force'.
Explain, in detail, what you understand by the proton motive lorde.
[2 marks]

CM CM: CM CM CM CM GM. CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM. CM CMCM CM CM CM. CM CM CM CM CM CM CM CMCM CM CM. CMCM CM

CM CM CM CM CM CM CM

(d) The	following statements are facts about mitochondria and respiration.
Α	Mitochondria have both an inner and outer membrane.
В	The pH of the intermembrane space is lower than the matrix.
С	The inner membrane contains many channel proteins.
D	Dissipating the proton motive force prevents ATP synthesis.
Evaluat	e which statements provide evidence for Mitchell's theory.
	[4 marks]
(e) Mito	hell published his theory in 1961.
He was	awarded the Nobel prize in 1978.
Sugges	t why there is often a large gap in time before theories are accredited.
	[2 marks]



[Total: 12]

- 5 Figure 5.1 shows an outline of anaerobic respiration in mammals and yeast.
 - (a) Fill in the gaps in Figure 5.1.

Figure 5.1

	***************************************	·· NADH	NAD	
Pyruvate	—			

(b) Explain why anaerobic respiration in mammals has a lower yield of ATP than aero	obic
respiration.	

[4 marks]

[6 marks]

CM CM

CM

CM CM

CM CM

 $\mathbb{C}\mathsf{M}$

CM CM CM

CM CM

GM GM GM GM GM

CM

CM CM CM

CM

CM CM CM

CM CM. CM CM CM CM CM. CM CM CM CM CM CM CM CM. CM. CM CM CM CM CM CM. CM CM CM CM CM CM CM CM CM CM

CM. CM CM CM CM CM CM CM CM CM CM

(c) The lactate produced in anaerobic respiration is often said to be 'toxic'.
This is incorrect.
Explain why.
[2 marks]
[2 marks]
(d) Figure 5.2 on the insert is a graph that shows how the length of anaerobic respiration in a
colony of yeast affects the size of the colony.
Describe and explain, in detail, what is shown by Figure 5.2.
[5 marks]
[Total: 17]

crash math spractice papers

6 Table 6.1 shows the energy values per gram of three respiratory substrates.

Table 6.1

Respiratory substrate	Mean energy value / kJ g ⁻¹
Carbohydrate	15.8
Protein	17.0
Lipid	39.4

(a) Explain what you understand by the term 'respiratory substrate'.	
	marks]
(b) Calculate how much more energy proteins release per unit gram compared to	
carbohydrates.	
Give your answer as a percentage to nearest whole number.	
[2	marks]
(c) Theoretically, 1 mol of glucose should produce 2870 kJ of energy.	
It takes 30.6 kJ to produce 1 mol ATP.	
Given that the true efficiency of glucose turnover is about 32%, show that 1 mol of glucose	ose is
likely to produce 30 mol ATP.	

[2 marks]

CM CM

CM

GM GM GM

CM CM

CM

CM CM CM CM. CM CM CM CM $\mathbb{G}\mathbf{M}$ CM CM CM CM CM CM CM CM. CM. CM CM CM CM CM CM. CM CM. CM CM

(d) Explain why some substrates have a higher energy value per unit mass than others.
[2 marks]
(e) Although many carbohydrates have similar energy values per gram, glucose is the main
respiratory substrate for humans.
Suggest why glucose is commonly used instead of other carbohydrates.
[2 marks]
[Total: 10]

