

crash**MATHS** -

PROOF BY INDUCTION WORKSHEET

crashmathsworksheets

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

1 Prove by induction that, for $n \in \mathbf{Z}^+$,	$\sum_{r=1}^{n} r^2 = \frac{n}{6} (2n+1)(n+1)$
·	

CM CM GM ĊM CM CM CM CM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CMĊM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 1 continued		

2	Show by mathematical induction that	©M CM
	6^n-1	-CM
	is divisible by 5 for $n \in \mathbf{Z}^+$.	CM
	is divisible by 3 for $n \in \mathbf{Z}$.	CM
		CM
		CM CM
		CM
\$ T		CM
		CM
		CM CM
		СM
ē.		CM
		€M
-		CM CM
2		CM
-		CM
Ŷ9		CM
-		CM CM
-		EM
9		CM
<u> </u>		СM
\$ 		CM
-		CM CM
-		CM
9	·	CM
<u>g</u>		CM CM
\(\frac{1}{2}\)		CM
,		СМ
		CM
<u> </u>		CM CM
·		CM
; .		GM
-		CM
		CM CM
(<u>-</u>		CM
		CM

CM CM GM ĊM CM CM CM CM CM CM0M CM CM CM ĊM CMCM CM CM CM CM CMCM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 2 continued		

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

3 A sequence of terms $u_1, u_2, u_3 \dots$, is defined by
$u_{n+1} = 5u_n - 8$
Given that $u_1 = 3$,
Prove by mathematical induction that $u_n = 5^{n-1} + 2$, for $n \in \mathbb{Z}^+$.
- n

CM CM GM ĊM CM CM CM CM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CMĊM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 3 continued		

CM CM -CM CM CM. CM CM CM GM CM CM CMCM CM Œ**M** CM CM CM CM CM CM CM

4 Using the method of mathematical induction, prove that
$\sum_{r=1}^{n} r = \frac{n}{2} \left(1 + n \right)$
for $n \in \mathbf{Z}^+$.

CM CM GM ĊM CM CM CM CM CM CM0M CM CM CM ĊM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CM CM CMCM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 4 continued			

CM CM -CM CM CM. CM CM CM GM CM Œ**M** CM CM CM CM CM CM CM

5 Prove, using mathematical induction, that for $n \in \mathbf{Z}^+$
$ \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}^n = \begin{pmatrix} n+1 & n \\ -n & 1-n \end{pmatrix} $

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 5 continued		

CM CMCM CM CM. CM CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM

6 Using the method of mathematical induction, prove that
$1+2+4+8++2^{n-1}=2^n-1$
for all positive integers n .
-
,

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 6 continued		

CM CM-CM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM

7	Given that
	$5^{n} + 2(11^{n})$
	is a multiple of 3 for all positive integers n , use mathematical induction to prove
	this result.
<u> </u>	
§ -	
-	
i .	
-	
-	
7 <u></u>	
:-	
·-	
<u> </u>	
<u> 5</u>	
17	
3	
3	
55	
()	
-1	
7	
12	
is .	
(<u>a</u>	

CM CM GM ĊM CM CM CM CM CM CM 0M CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 7 continued	

CM CM

CM CM

CM

CM GM CM

CM CM

CM CM CM CM CM CM CM CM CM CM CM CM

CM CM CM CM CM

CM

CM CM

8	(a)	Use mathematical	induction to	prove that,	for all	positive	integers	n,
---	-----	------------------	--------------	-------------	---------	----------	----------	----

$$\sum_{r=1}^{n} r^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

(b) Hence, show that

$$\sum_{r=1}^{n} (r^4 - r^2 - r) = \frac{1}{30} n(n+1)(2n+1)(3n^2 + 3n - 1)$$

CM CM GM ĊM CM CM CM CM CM CM0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 8 continued	

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

9 A recurrence relationship is defined such that
$u_1 = 2, u_2 = 6$
$u_{n+3} = 6u_{n+2} - 5u_{n+1} ,$
Use mathematical induction to prove that, for $n \in \mathbb{Z}^+$, $u_n = 5^{n-1} + 1$.
÷

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 9 continued	

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

10 Show, by mathematical induction that, $\sum_{r=1}^{m} (2r-1) = m^{2}$
for $m \in \mathbf{Z}^+$.

CM CM (M) ĊM CM CM CM CM GM CM 0M CM GM. CM CM CM CM CM CM CM CM CMĊM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 10 continued		

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

11 Prove, using mathematical induction, that
for all positive integers n .

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM GM. CM CM CM GM ĊM CM CM CM CM СM CM

Question 11 continued					

CM CM -CM CM CM. CM CM CM GM CM Œ**M** CM CM CM CM CM CM CM

that		ematical inducti	± grand den i 120	
	$\left(1 - \frac{1}{n^2}\right)! =$	$\frac{n+1}{2n}$		

CM CM GM ĊM CM CM CM CM CM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 12 continued	

CM CMCM CM CM. CM CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM

13 Using mathematical induction, prove that				
$3^{2n+3} + 40n - 27$				
is divisible by 64 for $n \in \mathbf{Z}^+$.				
·				

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 13 continued	
	,

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMCM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

		$ \begin{pmatrix} 1 & c \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 \\ 0 \end{pmatrix} $	$\begin{pmatrix} (2^n-1)c \\ 2^n \end{pmatrix}$	
where c is a const	ant.			
Using induction,	prove this result	t for all positive	e integers n .	

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 14 continued	
	
	-

CM CMCM CM CM. $\mathbb{C}\mathbf{M}$ CM CM CM CM CM СМ CM CMCM CMCM CM CM CM CM CMCM CM CM. CM CM CMCM CM CM CM CM CM CM CM

		3 _	$n \in \mathbf{Z}^+$	
		n^3-7	$n+3\equiv 3Q$	
for s	ome polynomial Q .			
	gallon comment expenses			

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM GM ĊM CM CM CM CM СM CM

Question 15 continued		

CM CM -CM CM CM. CM CM CM GM CM ŒM. CM CM CM CM CM CM CM

16 Use the method of mathematical induction to prove that, if $n \in \mathbb{Z}^+$,			
$\sum_{r=1}^{n} \left(\frac{1}{\sqrt{r-1} + \sqrt{r}} \right) = \sqrt{n} - 1$			

CM CM GM ĊM CM CM CM CM GM CM 0M CM CM CM CM CMCM CM CM CM CM CMĊM CM CM CM CM CM CM CM $\mathbb{C}M$ CM CM CM @M CM CM CM CM ĊM CM CM CM CM СM CM

Question 16 continued		

