crashMATHS - ## COORDINATE SYSTEMS WORKSHEET crashmathsworksheets | 1 A parabola has the equation $x = 5t^2$ and $y = 10t$. | | |---|--| | (a) Find the Cartesian equation for this parabola. | | | (b) State the focus of the parabola. | | | | | | (c) Work out the equation of the directrix of the parabola. | CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM CM ĊM CM CMCM CM GM CM | Question 1 continued | | | | |----------------------|--|--|--| CM CM CM ĊM CM CM CM $\mathbb{C}\mathbf{M}$ CM CMCM CMCM CMCM CM CM CM CM CMĊM CMCM CMCM CM CM CM CM CM OM CM CM CMCM CM CM CM CM CM CM CM CM СM CM CM | 2 | The focus of a parabola is $(2a+3,0)$. | |----------------|---| | | The parabola has Cartesian equation $y^2 = 12x$. | | | Find the value of a. | | - | | | | | | | | | - | | | · | | | - | | | - | | | | | | 8 1 | | | 2 | | | - | | | - | | | <u>8</u> | | | | | | | | | <u></u> | | | · | | | - | | | - | | | <u> </u> | | | 15 | | | | | | | | | <u> </u> | | | e e | | | | | | | | CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM CM ĊM CM CMCM CM GM CM | Question 2 continued | | | |----------------------|--|--| CM CMCM CM CM CM CM CM CM CM - 3 In the space below, on separate axis, sketch the graphs of - (a) $y^2 = 4ax$ - (b) $y = 4ax^2$ On your sketches, you should show clearly the position and coordinates of the foci and the position and equation of the directrices of these parabolas. CM CM CM CM $\mathbb{C}M$ CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM CM ĊM CM CMCM CM GM CM | uestion 3 continued | | | | |---------------------|--|--|--| 4 Find the equation of the tangent to the rectangular hyperbola with equation $y = \frac{c}{x}$ at | | |--|--| | the point $x = c^2$. | @M CM @M ĊM Œ**M** CM CM CM $\mathbb{G}\mathbf{M}$ $\mathbb{C}\mathbf{M}$ CM CM CM. CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM CM ĊM CM CMCM СM GM CM | Question 4 continued | | | |----------------------|--|--| CM GM CM 5 A parabola C has the Cartesian equation $y^2 = 36x$. F is the focus to C. (a) State the coordinates of F. The line l is the directrix of C. (b) Find the equation of l. The points P and Q are both at a distance of 12 units away from the directrix of the parabola. (c) Find the exact length of PQ, giving your answer as a surd in its simplest form. The point *X* has coordinates $(x, 6\sqrt{3})$. (d) Work out the area of the triangle PQX. @M CM @M ĊM Œ**M** CM CM CM $\mathbb{G}\mathbf{M}$ $\mathbb{C}\mathbf{M}$ CM CMCM. CM CM CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CM CM CM CM CM CM 0M CM CM CM CM CM CM CM CM ĊM CM CMCM СM СM CM | Question 5 continued | | |----------------------|--| CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CMCM CMCM CM CM CMCM CM CM CMĊM CMCM CM CM CM CM CM CM CMOM CM СM CM CM | 6 | (a) Show that the equation of the tangent to the parabola at the point $P(ap^2, 2ap)$ is | |---|--| | | $py - ap^2 = x$ | | | (b) State the equation of the tangent to the parabola at the point $Q(aq^4, 2aq^2)$. | | | The tangents at the points P and Q intersect at the point R . | | | (c) Find, in their simplest form, the coordinates of R . | | | Given that R also lies on the line with equation $x = 2a$, | | | (d) Find p in terms of q . | - | Question 6 continued | | | |----------------------|--|--| CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CMCM CMCM CM CM CMCM CM CM CMĊM CMCM CM CM CM CM CM CM CMOM CM СM СM CM | 7 The parabola P has focus $(3,0)$. The rectangular hyperbola R has parametric equations $x = 3t\sqrt{2}$ and $y = \frac{3\sqrt{2}}{t}$. P and R intersect at the point M . Find the coordinates of M . | |---| | | | | | | | | | | | | | | | Question 7 continued | | |----------------------|--| CM CMCM CM CM CM CM CM CM CMCM CMCM СM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CM CM CMOM CM СM СM CM | 8 | 8 The point $P(at^2, 2at)$ lies on a parabola C with equation $y^2 = 4ax$, where $a > 0$. | | | | | | |----------------|---|--|--|--|--|--| | | | | | | | | | | (a) Show that an equation of the normal to C at P is | | | | | | | | $y + tx = t(at^2 + 2a)$ | | | | | | | | | | | | | | | | Given that the point $R\left(a,\frac{a}{2}\right)$ lies on the normal to C at P , | | | | | | | | (b) Find the value of t. | | | | | | | | | | | | | | | ie . | | | | | | | | - | | | | | | | | 5 | | | | | | | | - | | | | | | | | 12 | | | | | | | | E- | | | | | | | | Q T | | | | | | | | - | | | | | | | | | | | | | | | | 1 | | | | | | | | E. | | | | | | | | | - | | | | | | | | A <u>s</u> | | | | | | | | e e | | | | | | | | - | | | | | | | | | | | | | | | | 14 | T. | · · · · · · · · · · · · · · · · · · · | | | | | | | - | | | | | | | | S | | | | | | | | | | | | | | | | - | | | | | | | | (- | Question 8 continued | | | |----------------------|--|--| CM CM CM CM CM CM CM CM CM CMCM CMCM CM CM CMCM CM CM CM ĊM CMCM CM CM CM CM CM CM CMOM CM СM СM CM | 0 | The points $M(9,9)$ and $N(19,b)$ where $b>0$ lie on the parabole C with equation | |--|--| | 9 | The points M (8,8) and N (18, b), where $b > 0$, lie on the parabola C with equation | | | $y^2 = 4ax.$ | | | (a) Find ab. | | | Given that F is the focus of C , | | | (b) Calculate the area of the triangle MNF. | | <u>-</u> | | | 5 | | | 3 | | | - | | | | | | <u> </u> | | | - | | | - | | | <u>-</u> | | | <u> </u> | | | | | | | | | | | | <u>a </u> | | | - | | | - | | | | | | | | | e e | | | . | | | | | | <u>-</u> | | | | | | | | | | | | Question 9 continued | | | |----------------------|--|--| CM CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CMCM CMCM CM CM CMCM CM CM CMĊM CMCM CM CM CM CM CM CM CMOM CM СM СM CM | 10 The point $M(6t^2, 12t)$ lies on the curve C with equation $12x - y^2 = 0$. | |---| | (a) Show that the equation of the tangent to C at the point M is | | $ty - x = 6t^2$ | | The tangent to the point M on C passes through the point $A(-6,4)$. | | (b) Find the possible values of t . | , | | | | | | | | | | | | Question 10 continued | | | |-----------------------|------|--|
 | | | | | | | | | | CM CMCM CM CM CM CM $\mathbb{C}\mathbf{M}$ CM CMCM CMCM CM CM CMCM CM CM CMĊM CMCM CM CM CM CM CM CM CMOM CM СM СM CM | 11 The point P lies on the rectangular hyperbola H with equation $xy = c^2$, where $c < 0$. | |---| | (a) Find the equation of the tangent to H at the point $\left(ct, \frac{c}{t}\right)$. | | The tangent crosses the x axis at the point P and the y axis at the point Q . | | (b) In terms of c and t , work out the coordinates of P and Q . | | Given that O is the origin and that the area of the triangle OPQ is 120, | | (c) Find the exact value of c . | Question 11 continued | | | | |-----------------------|--|--|--| 12 The point $P(at^2, 2at)$, where $t > 0$, lies on the parabola with equation $y^2 = 4ax$. | | |--|--| | The tangent and normal at P cut the y axis at the points A and B respectively. | | | PA | | | Find the value of $\frac{ PA }{ PB }$. | | | 1 1 | Question 12 continued | | |-----------------------|--| CM CMCM CM CM CMCM CMCM CM CM CM CM CM OM CM СM CM | 13 | The rectangular | r hyperbola | H has | Cartesian | equation | xy = 8. | |----|-----------------|-------------|-------|-----------|----------|---------| |----|-----------------|-------------|-------|-----------|----------|---------| The point $P\left(8p,\frac{8}{p}\right)$ and the point $Q\left(8q,\frac{8}{q}\right)$ lie on H, where $p,q\neq 0$ and $p\neq q$. The tangents to H at P and Q meet at the point N. - (a) Find the coordinates of N. - (b) Find the value of p^2q^2 when the line joining N to the origin is perpendicular to the chord PQ. CM CM CM CM CM CM GM CM GM CM CM ÇM CM CM CM CM **14** The normal to the parabola $y^2 = 4ax$ intersects the parabola at the point $P(ap^2, 2ap)$. The normal to the parabola at P then meets the curve again at another point Q. (a) Show that the coordinates of Q are $$\left(\frac{a(p^2+2)^2}{p^2}, -\frac{-2a(p^2+2)}{p}\right)$$ The tangents to the parabola at P and Q intersect at a point R. - (b) Find the coordinates of R. - (c) Show that the locus of R is $$y^2(x+2a) + 4a^3 = 0$$ | Question 14 continued | | |-----------------------|--| CM CM CM CM CM CM $\mathbb{C}\mathbf{M}$ GM CM GM GM GM ÇM CM CM CM CM CM 15 $$C_1: x^2 = 4ay$$ $$C_2: y^2 = 4ax$$ The parabolas C_1 and C_2 intersect at the origin and at a point P. The tangent to C_1 at the point P intersects C_2 at the point A. (a) Find the coordinates of A. The tangent to C_2 at the point P intersects C_1 at the point B. The angle $APB = x^{\circ}$ - (b) Show that $\tan x = \frac{3}{4}$. - (c) Show also that the line AB is a common tangent to both C_1 and C_2 . | | - | |--|---| | | | | | | | | | | | | | | * | | | - | | | | | | | | | * | | | | | | | | | | | | | | Question 15 continued | | | |-----------------------|--|--| CM CM CM CM CM CM CM CM CM CMCM CM CM CMCM CM CM CM CM CMĆM CMCM CM CM CM CM CM OM CM CM CM CM CM CM CM CM CM CMCM CM CM CM | 16 | The parabola | C | has equation | $y^2 =$ | 15 <i>x</i> | |----|--------------|---|--------------|---------|-------------| |----|--------------|---|--------------|---------|-------------| - (a) Prove that the line $y = mx + \frac{15}{4m}$ is a tangent to C, for all non-zero values of m. - (b) Hence, or otherwise, find the equations of the common tangents to C and the circle $x^2 + y^2 = 16$. | Question 16 continued | | |-----------------------|--| Extra space | | |-------------|---------| | Extra space | | | | | | | _ | 9 | | | - | | | | | | | | | <u></u> | | | | | | | | | | | | | | | - | | | | | | | | | <u></u> | 9: | * | | | | | | | | | - | | | | | | | | | 5. | | | - | | | | | | | | | | | Extra space | | | |-------------|--|--| Extra space | | |-------------|---------| | Extra space | | | | | | | _ | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | 9 | | | - | | | | | | | | | <u></u> | | | | | | | | | | | | | | | - | | | | | | | | | <u></u> | 9: | * | | | | | | | | | - | | | | | | | | | 5. | | | - | | | | | | | | | |